

COMUNE DI PONTASSIEVE Provincia di Firenze

VARIANTE AL REGOLAMENTO URBANISTICO denominata "3° Regolamento Urbanistico"

Allegato B

Approfondimento relativo all'ambito P5 cimitero della Misericordia, capoluogo

Professionista incaricato: Prof. Geol. Eros Aiello

Con:

Dott. Geol. Gabriele Grandini

luglio 2014 aggiornamento gennaio 2017

Via Andrea del Castagno, 8 - 50132 FIRENZE Tel. e Fax 055.571393-575954 C.F. e P.IVA 02287880484

Allegato B0

Precedenti pareri istruttori da parte del Genio Civile di Firenze

parere dell'URTT di Firenze di cui al protocollo n. 2968/400/07/05 del 18.2.2003

Ufficio Regionale per la Tutela del Territorio di Firenze via S.Gallo 34/A - 50129 FIRENZE tel. 055-4622711

Prot. n. 2968 400 07 05

Data

1 & FEB. 2003

Allegati

Risposta al foglio del

numero

Oggetto: Comune di Pontassieve. Deposito n° 1352 del 30.01.2003. Variante al PRG ampliamento cimitero loc. San Martino a Quona – Pratica soggetta a controllo obbligatorio.

Al Comune di Pontassieve

e.p.c. Alla Provincia di Firenze

Al Responsabile U.O.C. Strumenti della Pianificazione Arch. F. Caputo

Si comunica che dagli accertamenti previsti dalla Del. G.R. 304/96, condotti sulla pratica in oggetto, non sono emersi errori od omissioni nell'applicazione della normativa vigente, tali da comportare conseguenze rilevanti sulla previsione urbanistica e pertanto le indagini e gli studi eseguiti risultano adeguati.

IL FUNZIONARIO RESPONSABILE

Dott. Geol. Pierluigi Ballerini

IL PIRIGENTE

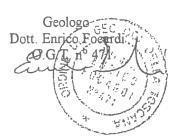
Dott Ing Leandro Benincasi

Regione Toscana

Certificazione indagini geologiche

Il sottoscritto Enrico Focardi, iscritto all'Ordine Professionale dei Geologi della Toscana con il numero 471, con studio in via P. Nenni, n° 13 a Sieci di Pontassieve e Codice Fiscale FCRNRC59L13G825Q, in seguito ad incarico ricevuto dal Comune di Pontassieve, ai sensi del comma 5 dell'art. 32 della L.R. 16/01/95, n° 5 modificata con L.R. 3/11/95, n° 96;

CERTIFICA


che le indagini geologico tecniche previste all'art. I delle L.R. 17/04/84 e dalle direttive regionali approvate con D.C.R. n° 94 del 12/02/85, integrate dal comma sesto dell'art. 7 della D.C.R. n° 230 del 21/06/94, relative all'atto di pianificazione urbanistica del Comune di Pontassieve denominato "variante per l'ampliamento del cimitero della Misericordia a San Martino a Quona "

SONO ADEGUATE

alle disposizioni normative vigenti.

Tali indagini sono costituite dai seguenti elaborati :

- 1) carta geolitologica in scala 1:2.000;
- 2) carta geomorfologica in scala 1:2.000;
- 3) carta idrologica in scala 1:10.000 1:5.000;
- 4) carta delle pendenze in scala 1:2.000;
- 5) carta della pericolosità e fattibilità in scala 1:2.000;
- 6) ubicazione delle indagini eseguite;
- 7) certificati analisi di laboratorio;
- 8) certificati misure inclinometriche;
- 9) relazione di commento.

REGIONE TOSCANA

ISTRUZIONI TECNICHE - ALLEGATO 2

SCHEDA PER DEPOSITO PRESSO L'UFFICIO DEL GENIO CIVILE COMPETENTE DELLE INDAGINI GEOLOGICO-TECNICHE AI SENSI DELLA L.R. 17.4.84 N.21, D.C.R. 12.2.85 N.94 INTEGRATA DAL COMMA 6 DELL'ART.7 DELLA D.C.R. 21.6.94 N. 230

SPAZIO RISERVATO
ALL'UFFICIO DEL
GENIO CIVILE
PER DATA E NUMERO DI DEPOSITO

Comune di パイトパモンジ Provin

Tipo di atto di pianificazione urbanistica che il Comune intende adottare, a cui si riferiscono le indagini che vengono depositate:

Piano Strutturale comunale ai sensi dell'art.24 della L.R. 5/95

Regolamento Urbanistico comunale ai sensi dell'art. 28 della L.R. 5/95

Variante al Piano Regolatore Generale o al Programma di Fabbricazione, da adottarsi ai sensi dei commi 2 o 8 dell'art. 40 della L.R. 5/95

arianti al Piano Regolatore Generale o al Programma di Fabbricazione, ai sensi del comma 1 dell'art.40 della L.R. 5/95

Variante al Piano Strutturale

Variante al Regolamento Urbanistico

Programma Integrato di Intervento ai sensi dell'art. 29 della L.R. 5/95

Variante al Programma Integrato di Intervento

Piano Urbanistico Attuativo

Variante al Piano Urbanistico Attuativo

ELENCO ELABORATI CHE VENGONO DEPOSITATI

**Certificazione di adeguatezza delle indagini geologico-tecniche

Tutti gli elaborati elencati nella certificazione di cui al precedente n. 1

- n...... elaborati dell'atto di pianificazione urbanistica da adottarsi, comprese le norme tecniche di attuazione, a cui si riferiscono le indagini, con evidenziati gli ambiti interessati dall'atto stesso, firmati dal progettista incaricato
- 4) n..... claborati consistenti copia di indagini precedentemente depositate che sono da considerarsi ancora valide ai fini della individuazione delle classi di pericolosità o che individuano classi di pericolosità o di fattibilità dello Strumento urbanistico Generale vigente che costituiscono presupposto per il controllo obbligatorio (¹).

Vedere riferimenti a tali indugini contenistruzioni tecniche Vedest precedent: p of fry old 19-4.1896 e del 8-7-1889 prot	uti nelle definizioni dei gruppi B ravert su Variand 7 brot. 15200, 269 11744	te Gelpunto:	JE FAZ
e are sitting	•	1	A HARAN

REGIONE TOSCANA

ISTRUZIONI TECNICHE - ALLEGATO 2

5) n ulteriori elaborati ritenuti utili dal tecnico incaricato o dal Comune

TIPOLOGIA DELLE INDAGINI RISPETTO AL CONTROLLO OBBLIGATORIO DEFINITO DALLE ISTRUZIONI TECNICHE REGIONALI

 Punto 1 - Le indagini che vengono depositate sono soggette al controllo obbligatorio dell'Ufficio del Genio Civile ai sensi del comma 6 dell'art. 32 della L.R. 5/95 modificata con L.R. 96/95 in quanto si riferiscono a uno o più dei seguenti tipi di atti di pianificazione che il Comune intende adottare:

A: nuovi Piani Regolatori Generali comunali, definiti ai sensi dell'art. 23 della L.R. 5/95: Piani Strutturali, Regolamenti Urbanistici, nonché varianti generali agli strumenti urbanistici generali vigenti da adottarsi con la procedura definita dai commi 9 e 10 dell'art.40 della L. R. 5/95

Altre varianti agli strumenti urbanistici generali comunali, comprese quelle dell'art.40 commi 2 e 8 della L.R. 5/95, che prevedano ampliamenti o nuove individuazioni di zone omogenee definite dal D.M. 2.4.1968 n. 1444 come B; C, D, F, esclusi i parchi, o ad esse assimilabili, nonché previsioni relative a nuova viabilità, nel caso che tali zone o previsioni ricadano in aree classificate in "pericolosità 4", in attuazione della normativa vigente sulle indagini geologico-tecniche, dallo studio allegato o dalle indagini già claborate per la redazione del Piano Urbanistico Generale vigente.

C: Programmi Integrati di Intervento e Piani Urbanistici attuativi o loro varianti che riguardino interventi classificati d<u>i</u> "fattibilità 4" dalle indagini geologico-tecniche allegate allo Strumento Urbanistico generale vigente o alla eventuale variante ad esso da adottarsi contestualmente o comunque effettuate in adeguamento alle disposizioni di cui alla sezione 4.2 della D.C.R. 12/2/85, n. 94.

- Punto 2 - Le indagini che vengono depositate non sono soggette al controllo obbligatorio in quanto non rientrano in alcuno dei tipi di atti di pianificazione elencati al precedente punto 1.

10

Firma del Tecnico incaricato per le indagini geològico terniche

Firma del Rappresenfante Comunale incaricato del deposito

N.B.- la presente scheda potra nel caso il Comune lo ritenga opportuno, essere compilata in duplice copia; in tal , caso una copia sarà riconsegnata, timbrata, in segno di ricevuta, da parte dell'Ufficio del Genio Civile.

parere dell'Ufficio del Genio Civile di Firenze parere n. prot. 152185/124.047.005 del 22.12.2005 relativo al deposito a controllo obbligatorio presso il Genio Civile di Firenze (deposito n. 1995 del 25.7.2005)che reiterava la stessa previsione di urbanistica

REGIONE TOSCANA Giunta Regionale

Direzione Generale delle politiche Territoriali e ambientali Area di Coordinamento Difesa del Suolo e Protezione Natura

Ufficio Regionale per la Tutela del Territorio di Firenze via S. Gallo 34/A – 50129 FIRENZE tel. 055-4622711

152185 174.067.005

Data

Risposta al foglio del

numero

oggetto:

L.R. 1/05 – Del. G. R. 1030/2003 Deposito nº 1995 del 25.07.05, a controllo obbligatorio Comune di Pontassieve – Regolamento urbanistico Parere adeguatezza indagini geologiche (L.R. 21/84).

---> Al Comune di Pontassieve

Alla Provincia di Firenze

in pase a quanto previsto dalla normativa vigente (L.R. 21/84) e vista la documentazione integrativa pervenuta (ns. prot 147504 del 12/12/05), sono stati eseguiti con esito positivo i entrolli sulla pratica in oggetto.

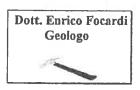
I FUNZIONARIO

Andrea Banchelli

IL DIRIGENTE RESPONSABILE

www.regione.toscana.it

50129 Firenze, Via S. Gallo 34/a Tel. 0554622711 Fax 055461543 tutelaterritorio.fi@mail.regione.toscana.it


Allegato B1

Estratti dalla relazione geologico tecnica di supporto ad una variante allo S.U. per l'ampliamento del cimitero della Misericordia di S. Martino a Quona (Dott. E. Focardi, ottobre 2002).

Contiene ubicazione e certificazioni stratigrafiche di cinque sondaggi a carotaggio continuo, prove di laboratorio su campioni indisturbati, monitoraggio inclinometrico sui tubi I1/S1, I3/S3 e I4/S4 dall'aprile 2001 all'aprile 2002

. . . 76

PROVINCIA DI: FIRENZE

COMUNE DI: PONTASSIEVE

LOCALITÀ: SAN MARTINO A QUONA

PROPRIETÀ: VENERABILE CONFRATERNITA DELLA MISERICORDIA

OGGETTO: PROGETTO DI VARIANTE ALLO S.U. COMUNALE PER L'AMPLIAMENTO DEL CIMITERO DI SAN MARTINO A QUONA.

RELAZIONE GEOLOGICO TECNICA D.R 94/85 – L.R. 05/95

Pontassieve 14 ottobre 2002

GEOLOGO
DOTT, ENRICO FOCARDIO
O,G.T. XIII 471

VARIANTE ALLO S.U. COMUNALE PER L'AMPLIAMENTO DEL CIMITERO DI SAN MARTINO A QUONA - RELAZIONE GEOLOGICO TECNICA DR 94/85 - LR. 05/95

Premessa

Questo studio costituisce il supporto geologico tecnico ai sensi della D.R. 94/85 e successiva L.R. 05/95 ad una variante al vigente Strumento Urbanistico di Pontassieve per un'area presso il Cimitero della Misericordia a monte di via San Martino a Quona a Pontassieve dove è in progetto l'espansione del cimitero stesso mediante la realizzazione di un complesso di loculi e di un campo di inumazione.

L'intervento (CAP 20), da realizzarsi in un'area posta a monte degli attuali confini del cimitero è stata inserita in fattibilità 4 e quindi "stralciata" a seguito di parere dell'Istruttore dell'Ufficio del Genio Civile di Firenze (allegato) che alla conclusione recita: "..... vista l'attribuita classe 4 di fattibilità (per le aree di espansione cimiteriale) ed in assenza degli studi e delle opere di bonifica previste per tale classe dalla Del.C.R. 94/85, nelle aree a pericolosità 4 le indagini devono essere considerate non adeguate per detto intervento, che dovrà pertanto essere parzialmente stralciato."

Il presente studio integra ai sensi dei punti 3.2 e 3.3 della D.C.R. 94/85, il supporto geologico tecnico. Sono stati quindi redatti i tematismi di Legge provvedendo anche ad eseguire le seguenti indagini geognostiche:

- Cinque sondaggi a carotaggio continuo con prelievo di campioni indisturbati ed esecuzione di prove in situ (S.P.T.)
- Installazione di due tubi piezometrici e successivo monitoraggio
- Installazione di tre tubi inclinometrici e successivo monitoraggio che si è prolungato per circa l anno
- Analisi di laboratorio sui campioni indisturbati prelevati
- Elaborazione stratigrafica e caratterizzazione geotecnica dei dati acquisiti confrontati con i risultati delle precedenti campagne geognostiche eseguite nell'area
- Esecuzione di verifiche di stabilità di un congruo tratto di versante
- Indicazioni progettuali preliminari degli interventi di bonifica e consolidamento e stima dei costi relativi.

Morfologia e geologia

L'area in studio è ubicata ad una quota di circa 180 m s.l.m. su di un tratto del versante sud occidentale del Poggio di Bardellone, caratterizzato da acclività dell'ordine

Allegato B2

Estratti dalla relazione geologico tecnica di supporto alla proposizione di Piano Attuativo (non adottato) per l'ampliamento del cimitero della Misericordia di S. Martino a Quona (Dott. E. Focardi, marzo 2008)

Contiene certificazioni relative alla prosecuzione del monitoraggio inclinometrico fino al novembre 2007 per i tubi inclinometrici I1/S1, I3/S3 oltre alle certificazioni di due tomografie sismiche a rifrazione per onde Sh

misure piezometriche

piezometro n.	livello falda (m) del 27/04/01	livello falda (m) del 05/07/01	livello falda (m) del 20/11/01	livello falda (m) del 05/04/02
P2	3.40	5.53	6.55	5.00
P5	1.85	2.27	3.20	1.95

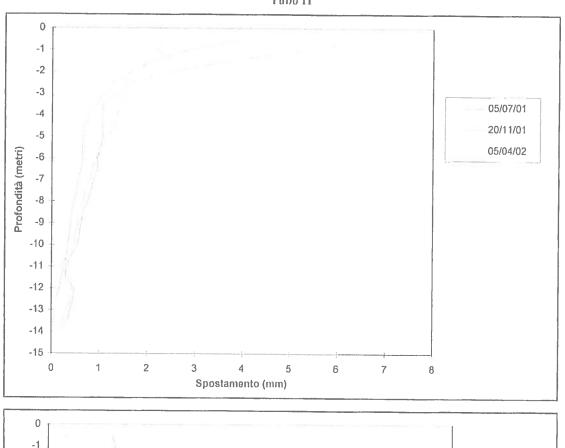
Tubo II

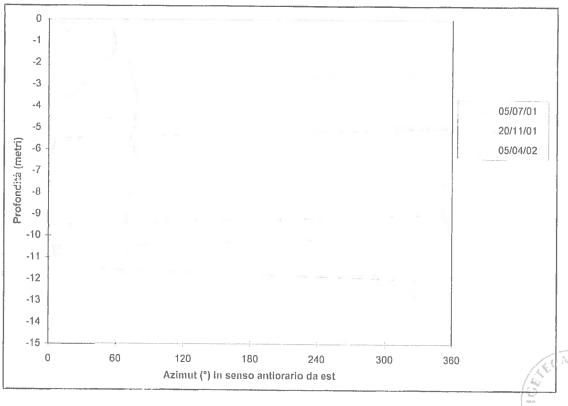
Quota testa tubo: 0.00 Correzione azimutale: 214° Passo Sonda (metri): 0.5

Modalita' di calcolo: differenziale, dal basso

Numero letture eseguite: 28

Sonda usata: segea


Correzione scala sonda: +1 Numero guide(2/4): 2


Spiralometro: 0

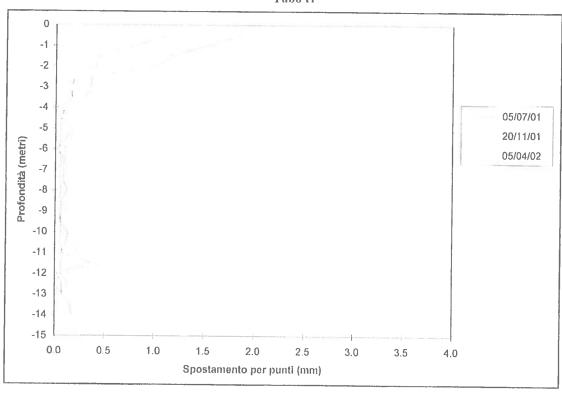
	Misura del :	05/07/01	Misura del : Intervento 2	20/11/01	Misura del : Intervento 3	05/04/02
Quota (metri)	Risultante (mm)	Azimut(°)	Risultante (mm)	Azimut(°)	Risultante (mm)	Azimut(°)
-0.5	3.95	55.3	7.03	57.4	2.41	15.2
-1.0	2.86	61.5	5.19	59.6	2.20	19.8
-1.5	2.12	67.6	3.68	58.3	1.96	12.6
-2.0	1.68	70.7	2.59	50.5	1.89	359.7
-2.5	1.29	74.1	1.67	39.5	1.68	359.5
-3.0	1.09	76.1	1.37	32.3	1.55	3.8
-3.5	0.95	79.2	1.08	22.3	1.40	0.8
-4.0	0.78	78.5	1.05	6.2	1.36	354.4
-4.5	0.70	77.0	1.06	0.4	1.31	354.5
-5.0	0.64	76.6	1.07	358.6	1.21	353.1
-5.5	0.63	72.3	1.03	7.1	1.08	359.7
-6.0	0.64	76.6	0.95	3.5	0.94	0.1
-6.5	0.61	75.2	0.97	2.6	0.85	0.2
-7.0	0.55	74.4	0.88	0.6	0.79	354.2
-7.5	0.52	72.7	0.82	357.3	0.69	351.6
-8.0	0.47	74.4	0.76	353.4	0.65	348.6
-8.5	0.42	73.4	0.65	348.6	0.50	343.5
-9.0	0.39	70.9	0.61	352.6	0.55	350.2
-9.5	0.36	68.1	0.58	357.0	0.49	0.5
-10.0	0.33	60.4	0.54	359.7	0.47	2.3
-10.5	0.31	70.0	0.41	3.6	0.36	5.3
-11.0	0.26	72.7	0.30	7.6	0.18	22.3
-11.5	0.20	85.7	0.29	18.1	0.39	41.1
-12.0	0.16	74.4	0.47	326.0	0.42	326.0
-12.5	0.10	70.0	0.45	326.0	0.40	333.1
-13.0	0.08	74.4	0.38	326.0	0.29	341.3
-13.5	0.05	56.0	0.33	334.8	0.24	344.4
-14.0	0.04	11.0	0.17	326.0	0.10	326.0

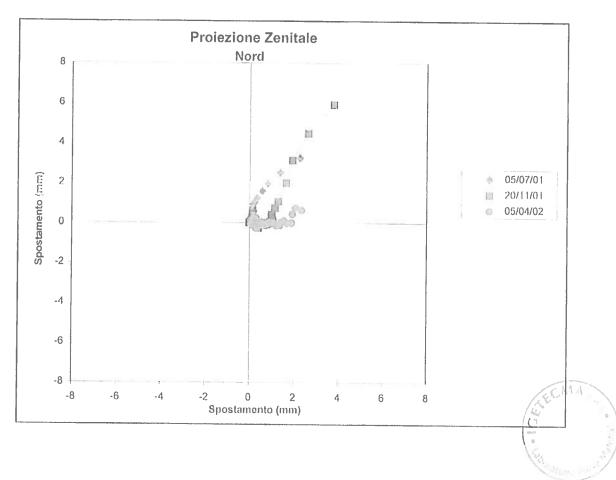
IGETECMA s.a.s - Via di Ugnano, 41 - 50142 Firenze - Tel. 055/780705 - Fax : 055/7320415 *LABORATORIO ASSOCIATO A.L.G.I.*

Tubo 11

Quota testa tubo: 0.00 Correzione azimutale: 214° Passo Sonda (metri): 0.5

Modalita' di calcolo: differenziale per punti, dal basso


Numero letture eseguite: 28 Sonda usata: segea Correzione scala sonda: +1


Numero guide(2/4): 2 Spiralometro: 0

	Misura del : Intervento I	05/07/01	Misura del : Intervento 2	20/11/01	Misura del : Intervento 3	05/04/02
Quota (metri)	Risultante (mm)	Azimut(°)	Risultante (mm)	Azimut(°)	Risultante (mm)	Azimut(°)
-0.5	1.15	39.5	1.86	51.4	0.28	336.3
-1.0	0.79	45.1	1.51	62.7	0.35	64.1
-1.5	0.45	56.0	1.17	76.0	0.44	87.0
-2.0	0.40	59.6	1.00	69.0	0.22	1.5
-2.5	0.20	63.1	0.36	68.1	0.18	317.9
-3.0	0.15	56.0	0.35	64.1	0.17	29.4
-3.5	0.17	82.6	0.30	97.6	0.16	74.4
-4.0	0.09	89.7	0.11	101.0	0.06	352.6
-4.5	0.06	82.6	0.04	101.0	0.11	11.0
-5.0	0.05	146.0	0.16	287.3	0.18	310.1
-5.5	0.05	326.0	0.10	42.0	0.15	357.0
-6.0	0.04	101.0	0.02	146.0	0.09	359.7
-6.5	0.06	82.6	0.09	22.3	0.10	56.0
-7.0	0.04	101.0	0.08	37.6	0.11	11.0
-7.5	0.05	56.0	0.08	37.6	0.06	29.4
-8.0	0.06	82.6	0.12	19.1	0.16	4.7
-8.5	0.04	101.0	0.06	299.4	0.08	217.6
-9.0	0.04	101.0	0.06	299.4	0.11	299.4
- 9.5	0.06	119.4	0.05	326.0	0.03	326.0
-10.0	0.06	352.6	0.13	347.8	0.11	352.6
-10.5	0.05	56.0	0.11	352.6	0.19	349.2
-11.0	0.08	37.6	0.06	299.4	0.23	236.0
-11.5	0.06	119.4	0.37	109.1	0.50	96.9
-12.0	0.06	82.6	0.02	326.0	0.06	262.6
-12.5	0.02	56.0	0.07	326.0	0.13	314.7
-13.0	0.04	101.0	0.07	281.0	0.05	326.0
-13.5	0.04	101.0	0.16	344.4	0.15	357.0
-14.0	0.04	11.0	0.17	326.0	0.10	326.0

IGETECMA s.a.s - Via di Ugnano, 41 - 50142 Firenze - Tel. 055/780705 - Fax : 055/7320415 *LABORATORIO ASSOCIATO A.L.G.I.*

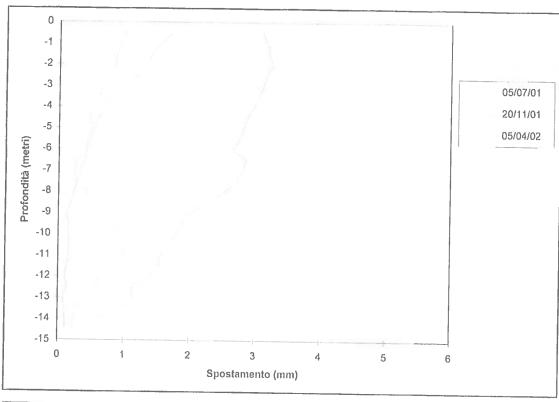
Tubo I3

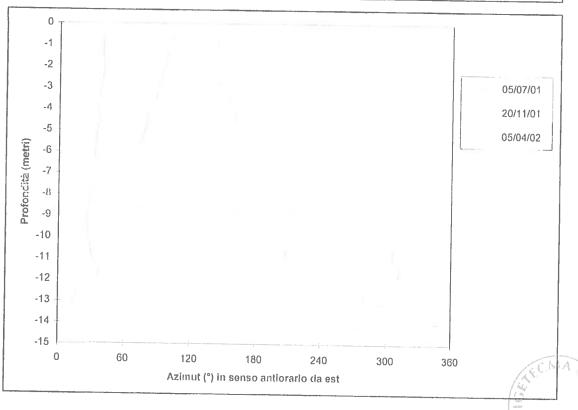
Quota testa tubo: 0.00 Correzione azimutale: 216° Passo Sonda (metri): 0.5

Modalita' di calcolo: differenziale, dal basso

Numero letture eseguite: 29

Sonda usata: segea


Correzione scala sonda: +1 Numero guide(2/4): 2


Spiralometro: 0

	Misura del : Intervento I	05/07/01	Misura del : Intervento 2	20/11/01	Misura del : Intervento 3	05/04/02
Quota (metri)	Risultante (mm)	Azimut(°)	Risultante (mm)	Azimut(°)	Risultante (mm)	Azimut(°)
-0.5	1.70	103.8	3.10	39.5	1.02	144.0
-1.0	1.56	101.6	3.18	39.4	0.95	144.0
-1.5	1.41	97.6	3.20	39.5	0.88	145.6
-2.0	1.31	95.9	3.26	40.7	0.85	142.3
-2.5	1.19	93.0	3.17	39.9	0.80	147.6
-3.0	1.09	90.6	3.12	37.7	0.68	146.1
-3.5	0.81	87.7	3.05	35.9	0.61	153.5
-4.0	0.70	81.5	2.98	35.4	0.49	158.7
-4.5	0.61	80.6	2.88	36.8	0.47	162.4
-5.0	0.55	78.2	2.82	34.3	0.51	173.1
-5.5	0.48	75.3	2.76	34.4	0.44	186.7
-6.0	0.44	70.4	2.66	32.5	0.41	196.4
-6.5	0.38	61.6	2.86	33.5	0.27	165.8
-7.0	0.33	49.6	2.82	34.3	0.25	168.0
-7.5	0.29	34.0	2.72	30.7	0.27	192.8
-8.0	0.24	22.0	2.53	29.5	0.43	213.4
-8.5	0.20	14.2	2.31	27.7	0.54	212.2
-9.0	0.13	345.8	2.00	26.5	0.80	213.9
-9.5	0.15	324.0	1.88	27.1	0.86	211.9
-10.0	0.15	314.5	1.80	26.7	0.89	212.5
-10.5	0.16	305.6	1.66	29.0	0.97	208.1
-11.0	0.16	305.6	1.55	31.2	1.01	207.4
-11.5	0.13	312.7	1.54	37.9	0.91	194.6
-12.0	0.10	310.0	1.38	33.9	0.63	200.3
-12.5	0.14	279.0	1.12	17.1	0.60	250.9
-13.0	0.07	279.0	1.14	14.4	0.34	288.0
-13.5	0.10	338.0	0.92	9.0	0.25	312.7
-14.0	0.11	350.6	0.60	348.4	0.24	266.0
-14.5	0.11	27.4	0.41	310.0	0.23	283.4

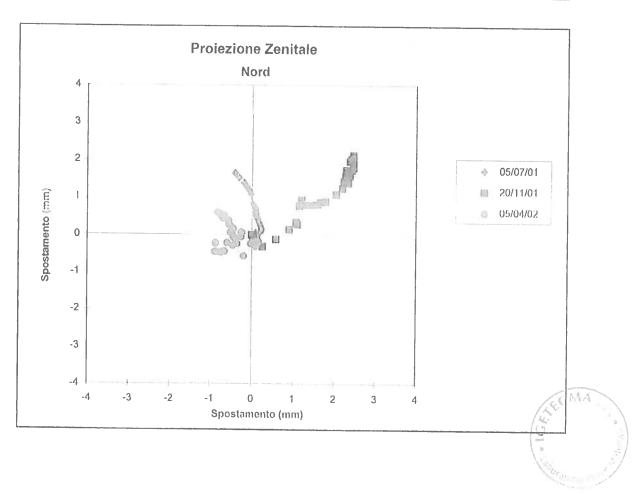
IGETECMA s.a.s - Via di Ugnano, 41 - 50142 Firenze - Tel. 055/780705 - Fax : 055/7320415 *LABORATORIO ASSOCIATO A.L.G.I.*

Tubo I3

Quota testa tubo: 0.00 Correzione azimutale: 216° Passo Sonda (metri): 0.5

Modalita' di calcolo: differenziale per punti, dal basso

Numero letture eseguite: 29 Sonda usata: segea Correzione scala sonda: +1 Numero guide(2/4): 2


Spiralometro: 0

	Misura del : Intervento I	05/07/01	Misura del : Intervento 2	20/11/01	Misura del : Intervento 3	05/04/02
Quota (metri)		Azimut(°)	Risultante (mm)	Azimut(°)	Risultante (mm)	Azimut(°)
-0.5	0.16	125.6	0.08	215.6	0.07	144.0
-1.0	0.18	135.9	0.02	234.0	0.08	125.6
-1.5	0.11	117.4	0.09	267.7	0.06	207.4
-2.0	0.13	122.2	0.10	68.0	0.09	87.7
72.5	0.11	117.4	0.13	107.1	0.13	155.3
-3.0	0.28	99.0	0.13	90.9	0.11	99.0
-3.5	0.13	122.2	0.08	54.0	0.13	132.7
-4.0	0.09	87.7	0.12	0.9	0.04	99.0
-4.5	0.07	99.0	0.14	99.0	0.10	54.0
-5.0	0.07	99.0	0.06	27.4	0.13	122.2
-5.5	0.06	117.4	0.13	75.8	0.08	125.6
-6.0	0.09	110.3	0.20	226.9	0.22	234.0
-6.5	0.09	110.3	0.06	350.6	0.03	144.0
-7.0	0.09	110.3	0.20	93.8	0.11	80.6
-7.5	0.08	72.4	0.20	46.9	0.20	61.1
-8.0	0.05	54.0	0.23	47.7	0.11	27.4
-8.5	0.10	54.0	0.32	35.6	0.26	37.3
-9.0	0.06	80.6	0.13	17.1	0.07	9.0
-9.5	0.03	54.0	0.08	35.6	0.03	54.0
-10.0	0.03	54.0	0.16	2.7	0.11	350.6
-10.5	0.00	0.0	0.13	0.9	0.04	9.0
-11.0	0.04	279.0	0.18	308.1	0.24	266.0
-11.5	0.02	324.0	0.18	70.0	0.29	181.9
-12.0	0.07	54.0	0.45	80.6	0.53	138.6
-12.5	0.07	279.0	0.06	117.4	0.39	219.1
-13.0	0.09	200.3	0.24	35.6	0.15	243.5
-13.5	0.03	234.0	0.41	40.0	0.20	14.2
-14.0	0.07	279.0	0.38	30.8	0.07	189.0
-14.5	0.11	27.4	0.41	310.0	0.23	283.4

IGETECMA s.a.s - Via di Ugnano, 41 - 50142 Firenze - Tel. 055/780705 - Fax : 055/7320415 *LABORATORIO ASSOCIATO A.L.G.I.*

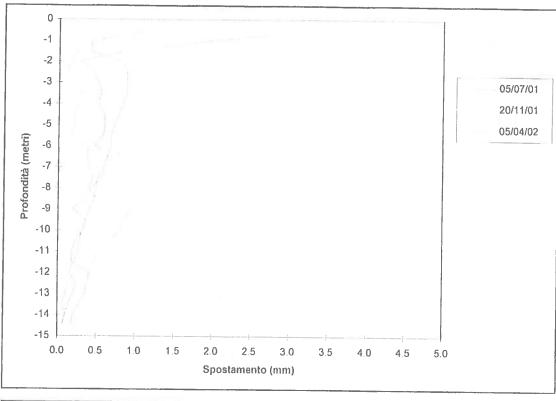
Zona: S. Martino a Quona Tubo I4

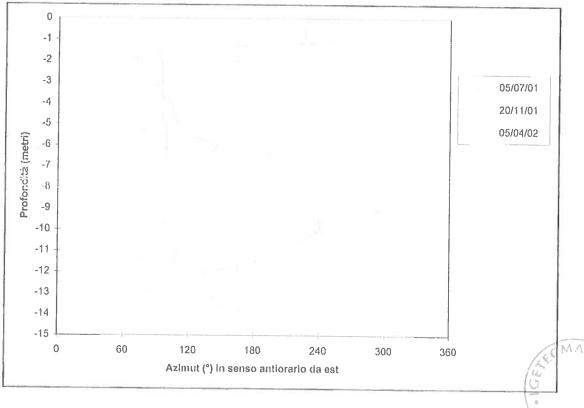
Quota testa tubo: 0.00 Correzione azimutale: 267° Passo Sonda (metri): 0.5

Modalita' di calcolo: differenziale, dal basso

Numero letture eseguite: 29

Sonda usata: segea


Correzione scala sonda: +1 Numero guide(2/4): 2


Spiralometro: 0

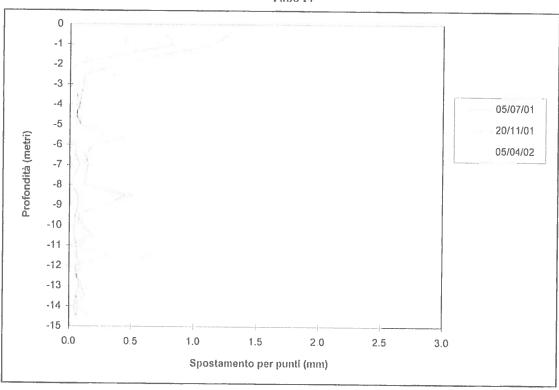
	Misura del : Intervento I	05/07/01	Misura del : Intervento 2	20/11/01	Misura del : Intervento 3	05/04/02
Quota (metri)	Risultante (mm)	Azimut(°)	Risultante (mm)	Azimut(°)	Risultante (mm)	Azimut(°)
-0.5	1.20	283.8	3.27	227.1	0.92	333.6
-1.0	0.43	279.7	2.00	226.5	0.50	336.4
-1.5	0.40	89.4	0.87	216.2	0.22	38.5
-2.0	0.83	94.7	0.27	161.2	0.15	83.5
-2.5	0.88	94.6	0.43	96.4	0.09	36.7
-3.0	0.88	94.6	0.52	107.0	0.40	96.6
-3.5	0.88	94.6	0.55	95.6	0.29	77.7
-4.0	0.83	96.5	0.51	104.3	0.25	69.0
-4.5	0.78	94.9	0.59	105.3	0.20	53.2
-5.0	0.73	97.0	0.60	109.9	0.22	66.4
-5.5	0.68	99.3	0.58	118.5	0.15	83.5
-6.0	0.68	99.3	0.47	146.8	0.38	214.6
-6.5	0.63	99.8	0.64	138.0	0.37	183.0
-7.0	0.58	100.4	0.60	150.0	0.41	197.0
-7.5	0.51	104.3	0.55	164.6	0.45	221.2
-8.0	0.49	107.7	0.44	169.8	0.40	254.6
-8.5	0.47	108.5	0.33	178.6	0.50	275.9
-9.0	0.41	103.6	0.19	296.2	0.93	300.3
-9.5	0.35	97.1	0.36	239.3	0.87	286.2
-10.0	0.30	97.8	0.33	240.5	0.79	285.7
-10.5	0.28	103.3	0.23	223.6	0.72	287.0
-11.0	0.26	109.7	0.18	174.9	0.51	293.2
-11.5	0.21	107.0	0.18	183.0	0.49	284.9
-12.0	0.15	102.5	0.41	135.5	0.23	93.0
-12.5	0.24	111.4	0.38	129.9	0.13	71.2
-13.0	0.20	122.7	0.35	138.0	0.10	93.0
-13.5	0.14	138.0	0.27	149.3	0.05	273.0
-14.0	0.09	126.7	0.20	175.9	0.10	287.0
-14.5	0.06	119.6	0.18	183.0	0.06	246.4

IGETECMA s.a.s - Via di Ugnano, 41 - 50142 Firenze - Tel. 055/780705 - Fax : 055/7320415

LABORATORIO ASSOCIATO A.L.G.L.

Tubo I4

Quota testa tubo: 0.00 Correzione azimutale: 267° Passo Sonda (metri): 0.5


Modalita' di calcolo: differenziale per punti, dal basso

Numero letture eseguite: 29 Sonda usata: segea Correzione scala sonda: +1 Numero guide(2/4): 2 Spiralometro: 0

	Misura del : Intervento 1	05/07/01	Misura del : Intervento 2	20/11/01	Misura del : Intervento 3	05/04/02
Quota (metri)	Risultante (mm)	Azimut(°)	Risultante (mm)	Azimut(°)	Risultante (mm)	Azimut(°)
-0.5	0.77	286.1	1.27	228.0	0.42	330.3
-1.0	0.83	274.7	1.16	234.2	0.45	311.2
-1.5	0.43	279.7	0.75	233.4	0.15	353.5
-2.0	0.05	273.0	0.40	238.3	0.11	119.6
-2.5	0.00	0.0	0.12	326.1	0.36	289.0
-3.0	0.00	270.0	0.11	209.6	0.16	131.7
-3.5	0.06	66.4	0.09	36.7	0.06	119.6
-4.0	0.06	119.6	0.08	291.4	0.08	111.4
-4.5	0.06	66.4	0.05	3.0	0.06	299.6
-5.0	0.06	66.4	0.09	36.7	0.09	36.7
-5.5	0.00	90.0	0.28	66.4	0.49	48.0
-6.0	0.05	93.0	0.19	296.2	0.21	287.0
-6.5	0.05	93.0	0.13	71.2	0.10	79.0
-7.0	0.08	74.6	0.15	83.5	0.18	109.0
-7.5	0.04	48.0	0.13	146.1	0.25	159.0
-8.0	0.02	93.0	0.12	146.1	0.20	143.2
-8.5	0.07	138.0	0.45	156.4	0.52	143.9
-9.0	0.07	138.0	0.30	27.4	0.23	9.3
-9.5	0.05	93.0	0.04	228.0	0.08	291.4
-10.0	0.04	48.0	0.12	273.0	0.07	273.0
-10.5	0.04	48.0	0.18	273.0	0.22	273.0
-11.0	0.06	119.6	0.02	93.0	0.07	3.0
-11.5	0.06	119.6	0.32	291.4	0.71	281.1
-12.0	0.09	306.7	0.05	183.0	0.11	119.6
-12.5	0.06	66.4	0.06	66.4	0.06	29.6
-13.0	0.08	93.0	0.10	107.0	0.15	93.0
-13.5	0.06	156.4	0.13	104.3	0.06	119.6
-14.0	0.04	138.0	0.04	138.0	0.07	318.0
-14.5	0.06	119.6	0.18	183.0	0.06	246.4

IGETECMA s.a.s - Via di Ugnano, 41 - 50142 Firenze - Tel. 055/780705 - Fax : 055/7320415 *LABORATORIO ASSOCIATO A.L.G.I.*

IGETECMA s.a.s. Istituto Sperimentale di Geotecnica e Tecnologia dei Materiali Via di Ugnano, 41/b - Firenze Tel. 055780705 - Fax 0557320415

Certificato di prova n. 107/2002

Firenze, B 27/11/2001 R.P.E. n. 69/2002 SETTORE: prove in situ

COMMITTENTE: Misericordia di Pontassieve LOCALITA': S. Martino a Quona, Pontassieve (FI)

Prove eseguite

Il giorno 05/04/02, tecnici di questo laboratorio, su incarico della Committenza, si sono recati presso il cantiere di cui sopra ed hanno eseguito n. 2 misure piezometriche (P2 e P5) e n. 3 letture inclinometriche:

Tubo 11 - profondità 14.0 m - lettura n. 3

Tubo 13 - profondità 14.5 m - lettura n. 3

Tubo 14 - profondità 14.5 m - lettura n. 3

Lo sperimentatore

Dott. Geol. Michele Galoni,

Il direttore del Laboratori

Prancesco Politi

NOTE:

- Il presente rapporto di prova riguarda esclusivamente i campioni sottoposti ad analisi.
- Il presente rapporto di prova non può essere riprodotto parzialmente, salvo approvazione scritta del Laboratorio.
- Il presente rapporto di prova è stato redatto conformemente alla norma UNI CEI EN 70011.

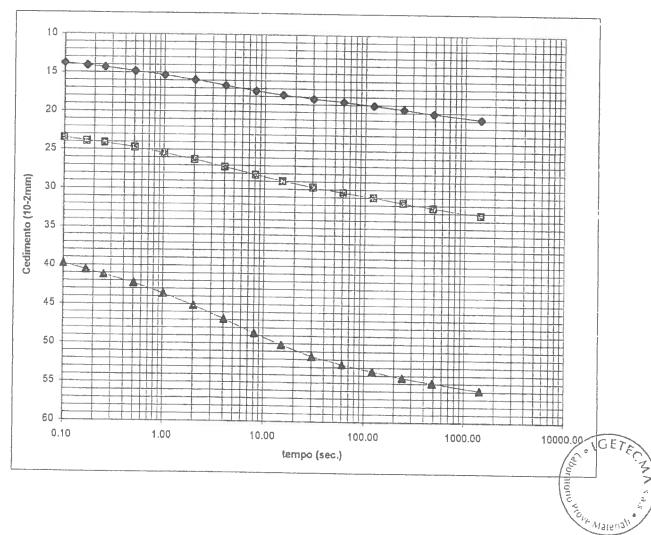
Il presente rapporto di prova è composto da n. 14 pagine

TABELLA RIASSUNTIVA RAPPORTO DI PROVA N. 115/2001

LOCALITA': S. Martino a Quona, Pontassieve (FI)

CAMPIONE	S3C3	S4C1	S5C1
Profondità metri	8.0 - 8.5	4.5 - 5.0	2.0 - 2.5
Prova E.L.L.			
Cu (kg/cmq)		1.44	
Eti (kg/cmq)		106.5	
Parametri fisici			
Peso vol. nat. (gr/cmc)	2.11	2.12	1.98
Peso vol. secco (gr/cmc)	1.78	1.84	1.63
Limiti di Atterberg			
Umidità naturale (%)	18.52	15.08	21.30
Limite liquido (%)	43.0	47.3	66.4
Limite plastico (%)	19.8	23.9	25.2
Indice plastico (%)	23.2	23.4	41.2
Indice di consistenza	1.05	1.38	1.09
Indice di attività			
Classificaz. Casagrande	CL	CL	CH
Analisi granulometrica			
Ghiaia (%)			1.88
Sabbia (%)			2.08
Limo (%)			42.33
Argilia (%)			53.71

TABELLA RIASSUNTIVA RAPPORTO DI PROVA N. 115/2001


LOCALITA': S. Martino a Quona, Pontassieve (FI)

CAMPIONE	S1C1	S2C1	S3C1	S3C2
Profondità metri	2.5 - 3.0	5.0 ~ 5.5	1.7 - 2.2	4.7 - 5.2
Prova E.L.L.				
Cu (kg/cmq)	0.54			0.34
Eti (kg/cmq)	98.6			35.0
Prova edometrica				
RR			0.01964	
CR			0.15246	
SR			0.02908	
Prova di taglio C.D.				
C (Kg/cmq)		0.18	0.26	
φ°		17.6	17.7	
Parametri fisici				
Peso vol. nat. (gr/cmc)	1.97	1.85	1.80	1.86
Peso vol. secco (gr/cmc)	1.55	1.44	1.32	1.38
Limiti di Atterberg				
Umidità naturale (%)	26.78	28.38	36.25	34.59
Limite liquido (%)	47.6	60.1	68.2	
Limite plastico (%)	29.0	24.1	29.4	
Indice plastico (%)	18.6	36.0	38.8	
Indice di consistenza	1.12	0.88	0.82	
Indice di attività				
Classificaz. Casagrande	ML - OL	CH	CH	
Limiti di ritiro				
Limite di ritiro (%)			10.8	
Coefficiente di ritiro			1.98	

Campione: S5C1	Profondità: 2.0 - 2.5 m

Cedimento carico 0.25 kg/cmq 10-2 mm 13.80 14.10 14.35 14.83 15.35 15.95 16.63 17.33 17.81 18.27	Cedimento carico 0.5 kg/cmq 10-2 mm 23.50 23.90 24.15 24.75 25.48 26.28 27.23 28.18 28.97 29.73	Cedimento carico 1.0 kg/cmq 10-2 mm 39.80 40.55 41.20 42.28 43.63 45.13 46.85 48.65 50.17 51.60	Tempo secondi 0.10 0.167 0.250 0.5 1 2 4 8 15
			0.5
	25.48	43.63	1
15.95	26.28	45.13	2
16.63	27.23	46.85	4
17.33	28.18	48.65	8
17.81	28.97	50.17	15
18.27	29.73	51.60	30
18.65	30.40	52.61	60
19.08	31.03	53.45	120
19.58	31.67	54.25	240
20.10	32.34	54.92	480
20.85	33.25	55.85	1440

IGETECMA s.a.s. - Via di Ugnano, 41 - 50142 Firenze - Tel. 055/780705 - Fax: 055/7320415

LABORATORIO ASSOCIATO A.L.G.I.

Campione: S5C1	Profondità: 2.0 - 2.5 m

PROVA DI PERMEABILITA' IN CELLA EDOMETRICA

Altezza (mm)	19.802
Volume (cmc)	39.667
Peso di volume naturale (gr/cmc)	1.98
Peso di volume secco (gr/cmc)	1.63
Contenuto d'acqua (%)	21.46

Pressione	Deformazione	Mv	Cv		K		
(kg/cmq)	(%)	(cmq/kg)	(cmq/sec)		(cm/sec)		
0.25	0.378	0.01513	3.646	x 10 ·3	5.515	x 10	-8
0.5	0.897	0.02076	1.671	x 10 -3	3.469	x 10	-8
1	1.890	0.01985	1.337	$\times 10^{-3}$	2.654	x 10	-8

Campione: S5C1

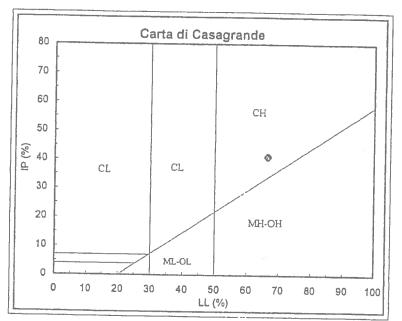
Profondità: 2.0 - 2.5 m

Descrizione: Argilla limosa grigio ocra con sporadici frammenti litici (marne) e tracce di scistosità, derivante da alterazione di argillite

LIMITI DI ATTERBERG

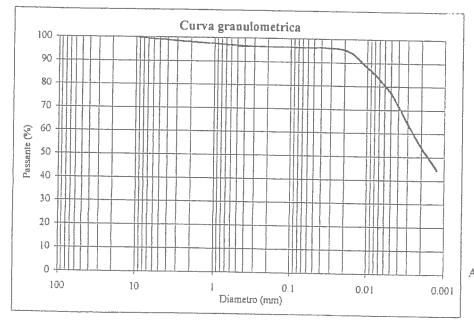
Umidità naturale (Wn) = 21.30%

Limite di liquidità (LL) = 66.4%


Limite di plasticità (LP) = 25.2%

Indice di plasticità (IP) = 41.2%

Indice di consistenza (Ic) = 1.09


Indice di attività (Iat) = 0.77

CH = argille inorganiche di alta plasticità

ANALISI GRANULOMETRICA

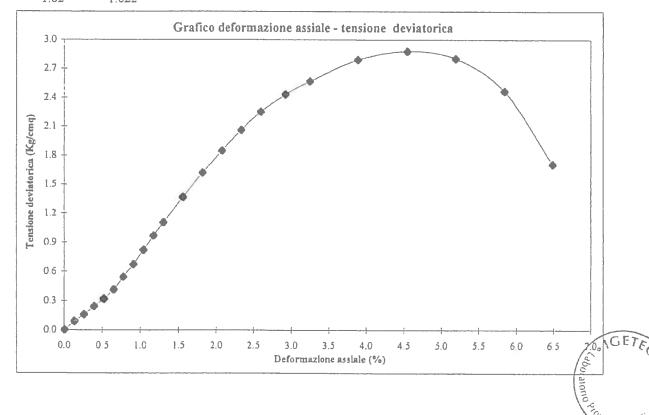
Diametro (mm) 9.5 4.75 2 0.850 0.425 0.250 0.150	Passante (%) 100 99.14 98.12 97.31 96.68 96.45 96.32	Diametro (mm) 0.0205 0.0108 0.0056 0.0040 0.0029 0.0021 0.0013	Passante (%) 95.56 88.94 79.25 71.66 63.11 54.95
0.075	96.22	0.0013	44.50

Ghiaia 1.88%Sabbia 2.08%Limo 42.33%Argilla 53.71%

Argilla con limo

IGETECMA s.a.s - Via di Ugnano, 41 - 50142 Firenze - Tel. 055/780705 - Fax : 055/7320415

LABORATORIO ASSOCIATO A.L.G.I.


Campione: S4C	-ami	JIV	HC.	• 12.	1
---------------	------	-----	-----	-------	---

Profondità: 4.5 - 5.0 m

PROVA DI ESPANSIONE LATERALE LIBERA

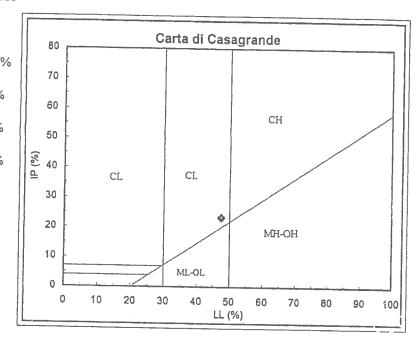
Peso volume naturale (gr/cmc)	2.12
Peso volume secco (gr/cmc)	1.84
Contenuto d'acqua (%)	15.08
Vel. def. (mm/min)	1.27
Sigma a rottura (Kg/cmq)	2.881
Coesione non drenata (Kg/cmq)	1.44
Modulo elastico	
tangente iniziale (kg/cmq)	106.5

3	σ	ε	σ
(%)	(kg/cmq)	(%)	(kg/cmq)
0.13	0.089	2.08	1.850
0.26	0.157	2.34	2,063
0.39	0.241	2.59	2.252
0.52	0.316	2.92	2.431
0.65	0.415	3.24	2.568
0.78	0.543	3.89	2.791
0.91	0.672	4.54	2.881
1.04	0.822	5.19	2.805
1.17	0.973	5.84	2.467
1.30	1.108	6.49	1.710
1.56	1.369		
1.82	1.622		

IGETECMA s.a.s. - Via di Ugnano, 41 - 50142 Firenze - Tel. 055/780705 - Fax: 055/7320415

LABORATORIO ASSOCIATO A.L.G.I.

Campione: S4C1


Profondità: 4.5 - 5.0 m

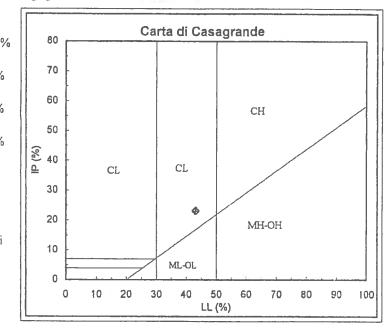
Descrizione: Limo argilloso grigio verde

LIMITI DI ATTERBERG

Umidità naturale (Wn) =	15.08%
Limite di liquidità (LL) =	47.3%
Limite di plasticità (LP) =	23.9%
Indice di plasticità (IP) =	23.4%
Indice di consistenza (Ic) =	1.38

CL = argille inorganiche di media plasticità

Campione: S3C3


Profondità: 8.0 - 8.5 m

Descrizione: 0 - 15 cm limo argilloso grigio turchino (prove eseguite in questo livello); 15 - 50 cm limo argilloso ocra, localmente grigio turchino, con frammenti litici

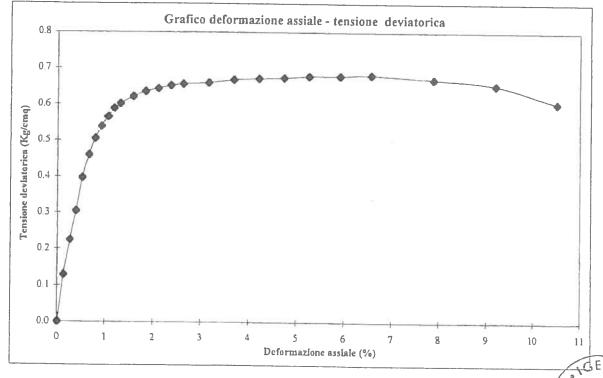
LIMITI DI ATTERBERG

Umidità naturale (Wn) =	18.52%
Limite di liquidità (LL) =	43.0%
Limite di plasticità (LP) =	19.8%
Indice di plasticità (IP) =	23.2%
Indice di consistenza (Ic) =	1.05

CL = argille inorganiche di media plasticità

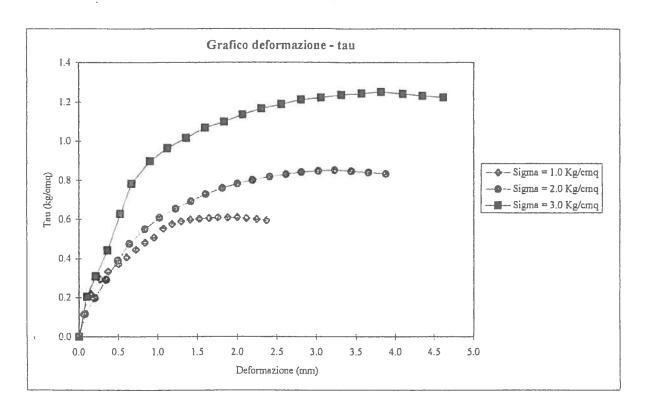
 γ nat (gr/cmc) = 2.11

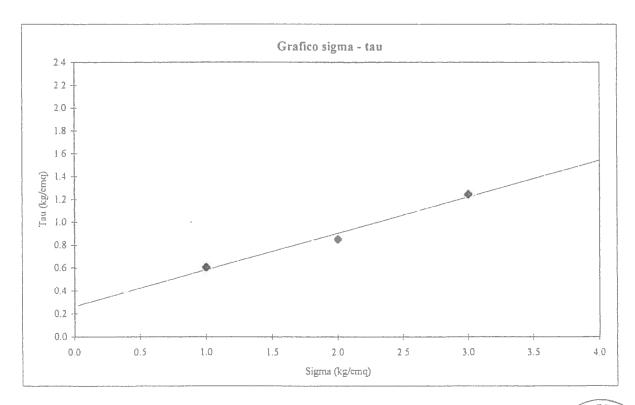
 γ secco (gr/cmc) = 1.78



Campione: S3C2	AND THE RESERVE THE PROPERTY OF THE PARTY OF	~		_
Campione: 55C2	Profondità: 4.7 - 5.3 m	ARCHITECTURE CONTRACTOR	City Chickens Committee of the Committee	٠.
	210:0:10:11:11: 7:7 - 5:5 111			-1

PROVA DI ESPANSIONE LATERALE LIBERA


Peso volume naturale (gr/cmc)	1.86
Peso volume secco (gr/cmc)	1.38
Contenuto d'acqua (%)	34.59
Vel. def. (mm/min)	1.27
Sigma a rottura (Kg/cmq)	0.682
Coesione non drenata (Kg/cmq)	0.34
Modulo elastico	
tangente iniziale (kg/cmq)	35.0


ε	σ	ε	σ	3	σ
(%)	(kg/cmq)	(%)	(kg/cmq)	(%)	(kg/cmq)
0.13	0.129	2.10	0.644	10.50	0.605
0.26	0.225	2.36	0.652		0.000
0.39	0.305	2.63	0.656		
0.53	0.397	3.15	0.661		
0.66	0.460	3.68	0.669		
0.79	0.505	4.20	0.673		
0.92	0.539	4.73	0.675		
1.05	0.566	5.25	0.679		
1.18	0.589	5.91	0.680		
1.31	0.602	6.56	0.682		
1.58	0.622	7.88	0.670		
1.84	0.636	9.19	0.654		

IGETECMA s.a.s. - Via di Ugnano, 41 - 50142 Firenze - Tel. 055/780705 - Fax: 055/73204185

Campione: S3C1 Profondità: 1.7 - 2.2 m

Compioner	S3C1	CONTRACTOR OF THE REAL PROPERTY.		
Campione:	331.1	Profondità	17 22	The state of the s
	0002	Profondità:	1./ - Z.Z m	아이지 않는 사람들이 아이를 살아 있다. 그 아이에 가장하게 되는 것이 되는 것이 없었다면 하게 되었다.

PROVA DI TAGLIO DIRETTO CONSOLIDATA DRENATA

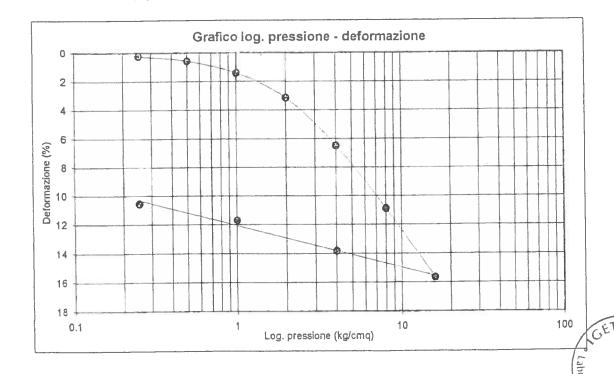
	Provino 1	Provino 2	Provino 3
Peso di volume naturale iniziale (gr/cmc)	1.78	1.78	1.78
Peso di volume naturale finale (gr/cmc)	1.84	1.87	1.91
Peso di volume secco iniziale (gr/cmc)	1.31	1.32	1.31
Peso di volume secco finale (gr/cmc)	1.34	1.38	1.42
Contenuto d'acqua iniziale (%)	35.71	35.68	35.65
Contenuto d'acqua finale (%)	36.69	35.30	33.91
Velocità di deformazione (mm/min.)	0.004	0.004	0.004
Sigma (kg/cmq)	1.0	2.0	3.0
Tau a rottura (kg/cmq)	0.610	0.851	1.249

Provi	по 1	Provin	10 2	Provi	10.3
Scorrimento	Tau	Scorrimento	Tau	Scorrimento	Tau
(mm)	(Kg/cmq)	(mm)	(Kg/cmq)	(mm)	(Kg/cmq)
0.05	0.115	0.08	0.117	0.10	0.204
0.14	0.218	0.20	0.195	0.21	0.307
0.26	0.291	0.35	0.290	0.36	0.439
0.37	0.333	0.49	0.389	0.52	0.625
0.50	0.370	0.64	0.475	0.67	0.780
0.60	0.405	0.84	0.550	0.90	0.897
0.72	0.445	1.02	0.607	1.12	0.963
0.84	0.480	1.22	0.652	1.36	1.015
0.95	0.506	1.42	0.691	1.60	1.068
1.07	0.552	1.60	0.728	1.83	1.098
1.18	0.576	1.80	0.758	2.07	1.134
1.29	0.588	2,00	0.781	2.31	1.164
1.41	0.598	2.19	0.799	2.56	1.187
1.52	0.602	2.41	0.816	2.81	1.210
1.64	0.606	2.61	0.829	3.06	1.221
1.75	0.608	2.81	0.840	3.32	1.235
1.88	0.609	3.03	0.846	3.57	1.242
2.00	0.610	3.23	0.851	3.82	1.242
2.11	0.604	3.44	0.846	4.10	1.249
2.24	0.600	3.66	0.839	4.35	
2.37	0.593	3.88	0.832	4.62	1.231 1.222

C = 0.26 kg/cmq

 $\phi = 17.7^{\circ}$

Campione: S3C1	Profondità: 1.7 - 2.2 m


PROVA EDOMETRICA

	Iniziale	Finale
Altezza (mm)	19.916	17.817
Volume (cmc)	39.948	35.737
Peso di volume naturale (gr/cmc)	1.83	1.97
Peso di volume secco (gr/cmc)	1.34	1.50
Contenuto d'acqua (%)	36.38	31.18

Pressione	Deformazione	Mv	Cv		K	
(kg/cmq)	(%)	(cmq/kg)	(cmq/sec)		(cm/sec)	
0.25	0.238	4 4 4				
0.5	0.570	0.01328				
1	1.420	0.01701	7.077	x 10 ⁴	1.204	x 10 -8
2	3.144	0.01724				
4	6.488	0.01672	m to			
8	10.876	0.01097				
16	15.666	0.00599				
4	13,835	0.00153	**			
1	11.711	0.00708			N. d	
0.25	10.540	0.01562	22			

In riferimento alla curva log. pressione / deformazione:

RR (rapporto di ricompressione): 0.01964
CR (rapporto di compressione): 0.15246
SR (rapporto di rigonfiamento): 0.02908

IGETECMA s.a s. - Via di Ugnano, 41 - 50142 Firenze - Tel. 055/780705 - Fax: 055/7320415

LABORATORIO ASSOCIATO A.L.G.I.

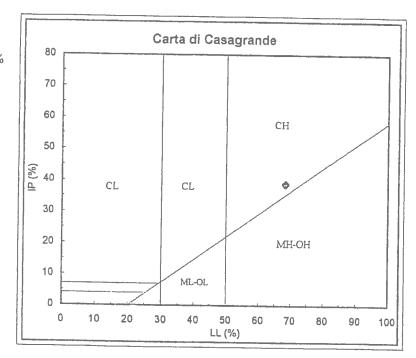
Campione: S3C1

Profondità: 1.7 - 2.2 m

Descrizione: Argilla limosa grigio verde con frammenti litici abbondanti nella parte superiore

LIMITI DI ATTERBERG

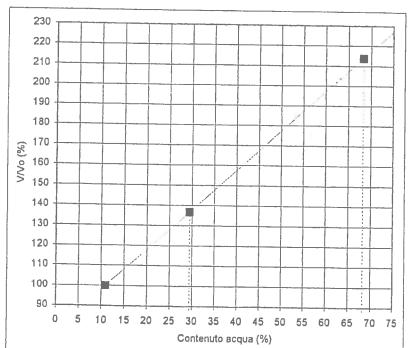
Umidità naturale (Wn) = 36.25%


Limite di liquidità (LL) = 68.2%

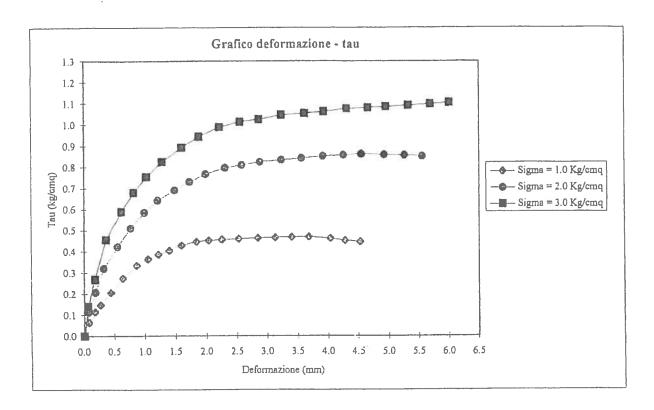
Limite di plasticità (LP) = 29.4%

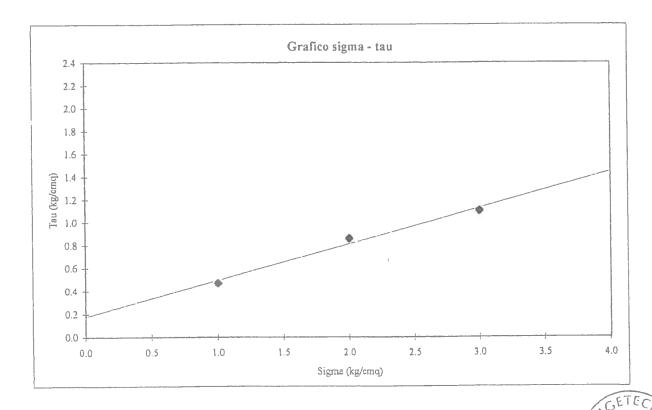
Indice di plasticità (IP) = 38.8%

Indice di consistenza (Ic) = 0.82


CH = argille inorganiche di alta plasticità

LIMITE DI RITIRO


Limite di ritiro (Ws) = 10.8%


Coefficiente di ritiro (Rs) = 1.98

Campione: S2C1 Profondità: 5.0 - 5.5 m

IGETECMA s.a.s - Via di Ugnano, 41 - 50142 Firenze - Tel. 055/780705 - Fax: 055/7320415 Core Male

	CACH	the state of the control of the cont	
Campione:	S2C1	Duo fonditt.	5.0 - 5.5 m
Campione.		FIGURE STATE	
			010 - 010 III

PROVA DI TAGLIO DIRETTO CONSOLIDATA DRENATA

	Provino 1	Provino 2	Provino 3
Peso di volume naturale iniziale (gr/cmc)	1.85	1.85	1.85
Peso di volume naturale finale (gr/cmc)	1.92	1.96	2.00
Peso di volume secco iniziale (gr/cmc)	1.44	1.45	1.45
Peso di volume secco finale (gr/cmc)	1.48	1.53	1.58
Contenuto d'acqua iniziale (%)	28.42	28.18	27.94
Contenuto d'acqua finale (%)	29.64	28.26	26.89
Velocità di deformazione (mm/min.)	0.004	0.004	0.004
Sigma (kg/cmq)	1.0	2.0	3.0
Tau a rottura (kg/cmq)	0.470	0.860	1.103

Provi	ino 1	Provin	o 2	Provir	10 3
Scorrimento	Tau	Scorrimento	Tau	Scorrimento	Tau
(mm)	(Kg/cmq)	(mm)	(Kg/cmq)	(mm)	(Kg/cmq)
0.07	0.065	0.07	0.115	0.06	0.139
0.18	0.116	0.18	0.207	0.17	0.267
0.27	0.149	0.32	0.320	0.36	0.454
0.44	0.207	0.55	0.423	0.61	0.587
0.64	0.275	0.77	0.511	0.81	0.679
0.87	0.335	0.99	0.586	1.02	0.752
1.05	0.366	1.21	0.642	1.28	0.824
1.22	0.387	1.48	0.690	1.59	0.890
1.40	0.406	1.72	0.730	1.88	0.943
1.59	0.429	1.99	0.767	2.21	0.988
1.84	0.447	2.30	0.794	2.55	1.013
2.03	0.453	2.58	0.808	2.86	1.024
2.25	0.457	2.88	0.823	3.23	1.044
2.52	0.460	3.23	0.833	3.61	1.052
2.85	0.463	3.56	0.841	3.92	1.061
3.13	0.466	3.91	0.851	4.30	1.074
3.40	0.469	4.25	0.856	4.65	1.078
3.68	0.470	4.54	0.860	4.96	1.083
4.03	0.463	4.93	0.858	5.33	1.089
4.27	0.453	5.26	0.854	5.69	1.096
4.52	0.447	5.56	0.851	6.00	1.103

C = 0.18 kg/cmq

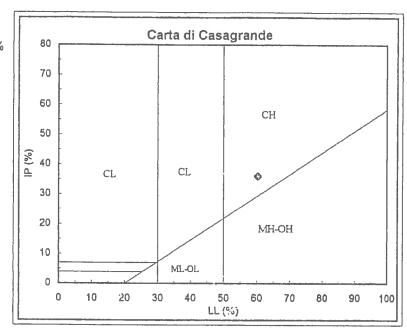
 $\varphi = 17.6^{\circ}$

		 	_
Campione: S2C1	Profondità: 5.0 - 5.5 m		DESCRIPTION OF THE PARTY OF THE

Descrizione: Argilla limosa ocra con frammenti litici

LIMITI DI ATTERBERG

Umidità naturale (Wn) = 28.38%

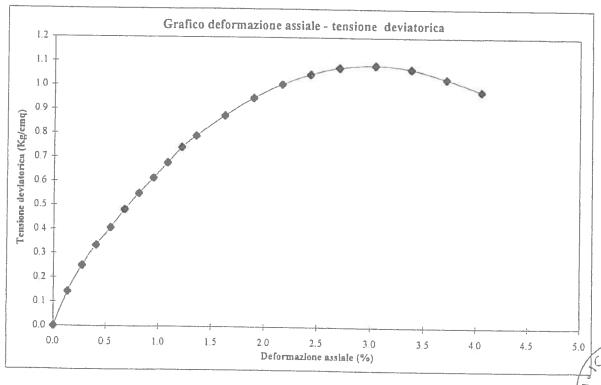

Limite di liquidità (LL) = 60.1%

Limite di plasticità (LP) = 24.1%

Indice di plasticità (IP) = 36.0%

Indice di consistenza (Ic) = 0.88

CH = argille inorganiche di alta plasticità



Campione: S1C1	Carried and a state of the stat
1 amplione, Str.	Declardidi. 2 F 2 C
Campione, DICI	Profondità: 2.5 - 3.0 m

PROVA DI ESPANSIONE LATERALE LIBERA

Peso volume naturale (gr/cmc)	1.97
Peso volume secco (gr/cmc)	1.55
Contenuto d'acqua (%)	26.78
Vel. def. (mm/min)	1.27
Sigma a rottura (Kg/cmq)	1.086
Coesione non drenata (Kg/cmq)	0.54
Modulo elastico	
tangente iniziale (kg/cma)	98.6

3	σ	8	σ
(%)	(kg/cmq)	(%)	(kg/cmq)
0.13	0.143	2.16	1.005
0.27	0.250	2.43	1.048
0.40	0.334	2.70	1.075
0.54	0.406	3.03	1.086
0.67	0.482	3.37	1.071
0.81	0.550	3.71	1.030
0.94	0.614	4.05	0.978
1.08	0.678		
1.21	0.741		
1.35	0.790		
1.62	0.874		
1.89	0.948		

IGETECMA s.a.s. - Via di Ugnano, 41 - 50142 Firenze - Tel. 055/780705 - Fax: 055/7320415

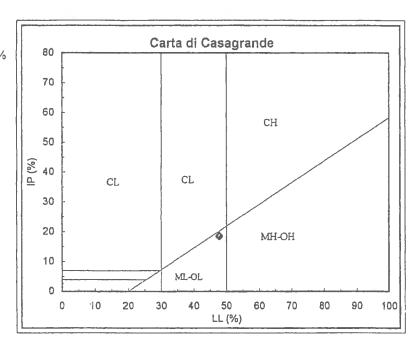
LABORATORIO ASSOCIATO A.L.G.I.

Campione: S1C1	Profondità: 2.5 - 3.0 m	

Descrizione: Limo argilloso ocra con frammenti litici

LIMITI DI ATTERBERG

Umidità naturale (Wn) = 26.78%


Limite di liquidità (LL) = 47.6%

Limite di plasticità (LP) = 29.0%

Indice di plasticità (IP) = 18.6%

Indice di consistenza (Ic) = 1.12

ML-OL = limi inorganici e limi ed argille organiche di media plasticità

Rapporto di prova n. 115/2001

Firenze, li 17/05/2001

Verbale d'accettazione n. 54/2001

SETTORE: meccanica delle terre

COMMITTENTE: Misericordia di Pontassieve LOCALITA': S. Martino a Quona, Pontassieve (FI)

CAMPIONI:

n. 6 di terreno indisturbati; n. 1 di terreno rimaneggiato (S3C3)

 S1C1
 profondità
 2.5 - 3.0 m
 S2C1
 profondità
 5.0 - 5.5 m

 S3C1
 profondità
 1.7 - 2.2 m
 S3C2
 profondità
 4.7 - 5.2 m

 S3C3
 profondità
 8.0 - 8.5 m
 S4C1
 profondità
 4.5 - 5.0 m

 S5C1
 profondità
 2.0 - 2.5 m

Prove eseguite

- 1 Umidità naturale (CNR UNI 10008)
- 2 Peso di volume naturale (Boll. Uff. CNR n. 40)
- 3 Limiti di Atterberg (ASTM D 4318-84)
- 4 Analisi granulometrica per setacciatura: per via umida (Boll. Uff. CNR n. 23)
- 5 Analisi granulometrica della frazione fine: metodo del densimetro (ASTM D 1140/71)
- 6 Prova edometrica a gradini di carico costante (ASTM 2435)
- 7 Prova di taglio consolidata drenata (ASTM D 3080/72)
- 8 Prova di espansione laterale libera (ASTM D 2166/85)
- 9 Limite di ritiro (ASTM D 4318/84)
- 10 Prova di permeabilità in cella edometrica (ASTM 2435)

Lo sperimentatore

Dott. Geolf Michele Caloni

Il direttore del Laboratorio

ing. Francesco Politi

NOTE:

- Il presente rapporto di prova riguarda esclusivamente i campioni sottoposti ad analisi.
- Il presente rapporto di prova non può essere riprodotto parzialmente, salvo approvazione scritta del Laboratorio.
- Il presente rapporto di prova è stato redatto conformemente alla norma UNI CEI EN 70011.

Il presente rapporto di prova è composto da n. 17 pagine

ANALISI DI LABORATORIO

(IGETECMA S.A.S. DI FIRENZE)

Cimitero di San Martino a Quona - Pontassieve Localita': 1:100 marzo 2001 5 SCALA Data Sondaggio n. Attrezzatura e metodo di perforazione: Sonda a rotazione LIVELLI ACQUA PROFONDITA' m MATTINO Campione a percussione Campione rimaneggiato ○ LEFRANC Rivest Foro Data Data Н Campione S.P.T. Campione ind. a pressione Prova di permeabilita' Campione da Vana Test Campione ind. rotativo LUGEON Spessore DESCRIZIONE LITOLOGICA P ,60 Sucio limoso argilioso, molto alterato Limi sabbiso argillosi di colore grigio con screziature marroni e biancastre, mediamente atterati 8,50 Mame ed argilliri, mediamente alterate a fratturate, di colore grigio turchino con screziature biancastre 15,00

Confraternita Misericordia di Pontassieve

Confraternita Misericordia di Pontassieve Cimitero di San Martino a Quona - Pontassieve Localita': 4 marzo 2001 1:100 Sondaggio n. Data SCALA Attrezzatura e metodo di perforazione: LIVELLI ACQUA Sonda a rotazione PROFONDITA' m MATTINO SERA Campione rimaneggiato Campione a percussione ○ LEFRANC Data Н Data Н Rivest. Fora Campione 5.P.T. Campione ind. a pressione Prova di permeabilita' Campione ind. rotativo Campione da Vana Test LUGEON В DESCRIZIONE LITOLOGICA P 7 Sudio e ilmo sabbloso argilloso di colore mamone scuro, molto alterati con screziature biancastre e rossastre. 1,80 Marne ed argilliti, mediamente alterate e fratturate, con screziature di colore vinaccia 7,10 Numerosi trovanti calcarel, fratturati 5,00 Marne ed argiliti fogilettate 5,00

Confraternita Misericordia di Pontassieve Cimitero di San Martino a Quona - Pontassieve Localita': 1:100 marzo 2001 3 SCALA Date Sondaggio n. Attrezzatura e metodo di perforazione: Sonda a rotazione LIVELLI ACQUA PROFONDITA' m
Rivest Foro MATTINO SERA Campione rimaneggiato Campione a percussione LEFRANC Н Н Data Data Campione S.P.T. Campione ind. a pressione Prova di permeabilita' Campione ind. rotativo Campione da Vana Test LUGEON Camploni DESCRIZIONE LITOLOGICA 8 1,40 Pavimentazione e materiali di riporto 3,60 Limi argillosi di colore da marrone a grigio biuastro, di media consistenza, con numeros concrezioni carbonatiche millimetriche Limi argitiosi gigio biuastri da consistenti a molto consistenti con tracce di organizzaziona e screziature grigiastre 7.00 Argilliti e marne, di colore prevalentemente rosso vinaccia conscrettature grigiastre. Sono presenti livelii calcarel di spessore decimetrico

Confraternita Misericordia di Pontassieve

Localita': Cimitero di San Martino a Quona

SCALA

1:100

Data marzo 2001

Sondaggio n.

2

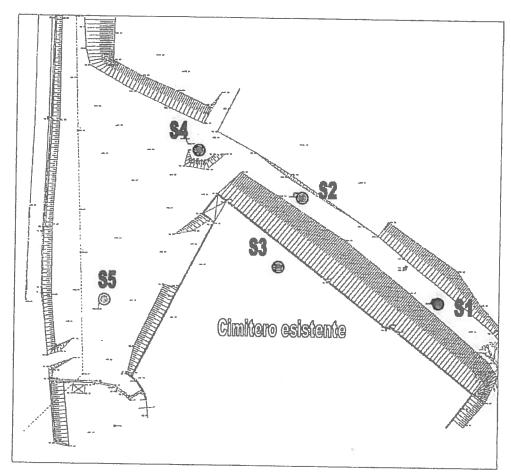
Attrezza	tura	e meto	do di perfor	azione:	Sonda a rotazione							LLI ACQU	A	TTINO	
			eggiato		Campione a percussione	○ LEFRANC		RIV	OFONDIT est.	Foro	SERA Data	H	Dati		Н
Cam					Campione ind. a pressione	Prova di permea	bilita'								
					Campione ind. rotativo	LUGEON								1	
140															
-	T	T													
								R							
i di	ore	ditta'	된 9	lond			С	V B			P i	dita'		1	% c
Quota di riferim.	peas	Profondita'	Sezione terreno	Campion	DESCRIZIONE LITOLOGICA	A.	1	*	P		2 2	Profondita'	8 s		a t
*		E					1	E II	0 c	8	m a t	E.	p	F	g
43	1	1								3	r		т -	d	9
	2,0	10		-	Limi e limi sabbloso argillosi molto alterati, ocracee.	con screziature grigie ed	Wall								
					ouraces.										
		2.0	٥				a decree						1		
		AND	5												
		1													
		i		J	And a second sec		Ì								
			5												
							1				Promote Adv.	A company			
	6,0	20		4	Argille ilmose grigie con screziature bianca a consistenti.	astre da mediamente compati	d				dis-				
15				5.50											
		1		-											
												and the second			
		j										1000			
	1	8,6	10	2	A normalism American spacetic and special state of the special state of	allegangs at a confirmation with the confirmation of	÷				PARTICIPATION AND ADDRESS OF THE	8 00	4 9		
							d sympto					The state of the s	13		
	1		7	7											
				1			!		- very		The state of the s				
	Company of the State of the Sta														
	5,	ca			Argille Ilmose molto consistenti di colore g marnosi,	grigi verdastro con livelletti	1								
4		1		7	marricol.		i				The state of the s				
- 1											4				
			5											· production of	
	1000	13,	60				1				A ALAMAN AAAA	13 20	-		
	previously as Moor			§								and the second second	13 20 29		
	12	60		8											
					Marne grigle e turchine						Value and the second se				
	+	15	00	2		or spring the second statement of the second statement	-				Andrews and the second				
4							1								
					1										
	-	1													
	1	The state of the s					and the second					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
					Į.					ŀ		Armen A			
												distribution and the state of t			
	and designation of						A solution is		1	4					
1								W 19					Rijemania - da adaman	7	
		and the same of th					1	America .			11		-	i	

Confraternita Misericordia di Pontassieve

Localita': Cimitero di San Martino a Quona - Pontassieve

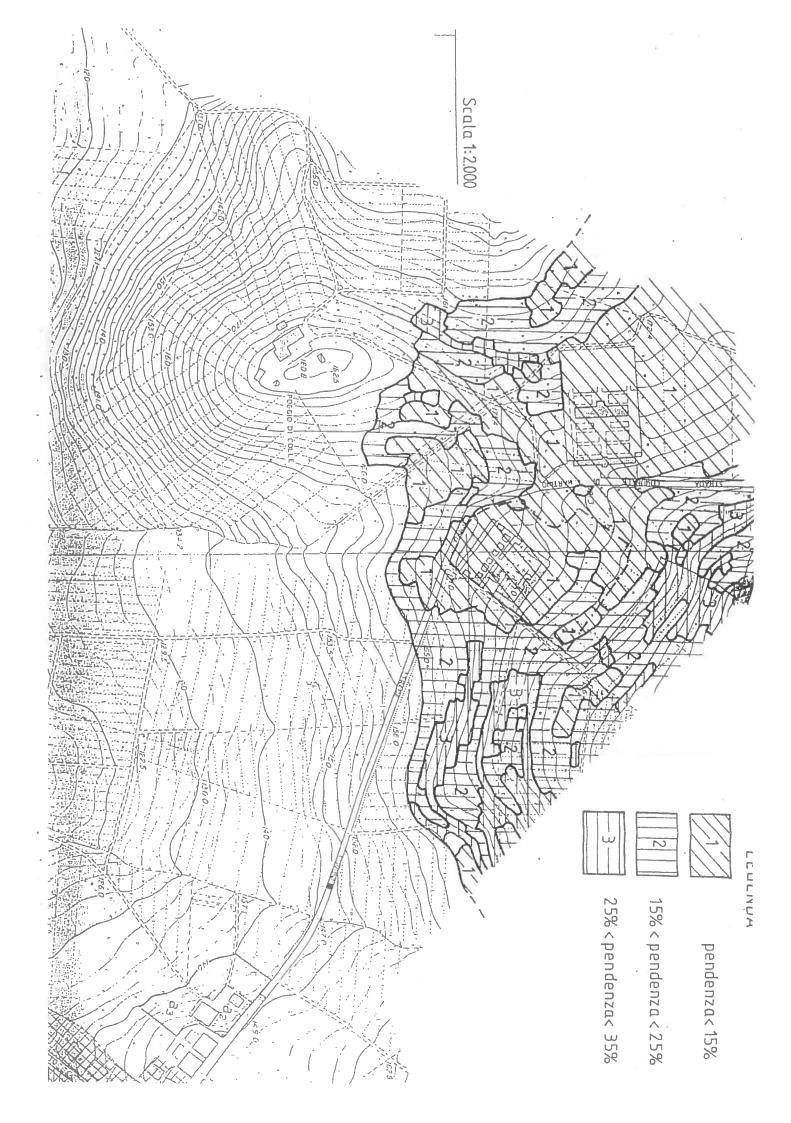
SCALA

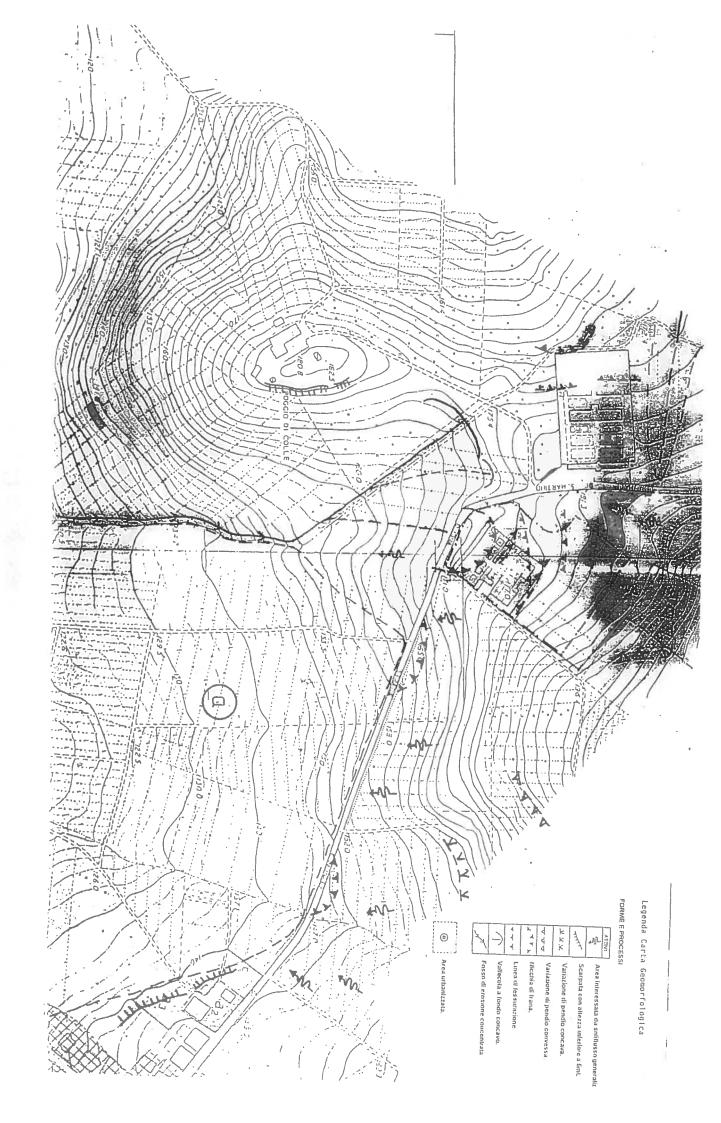
1:100

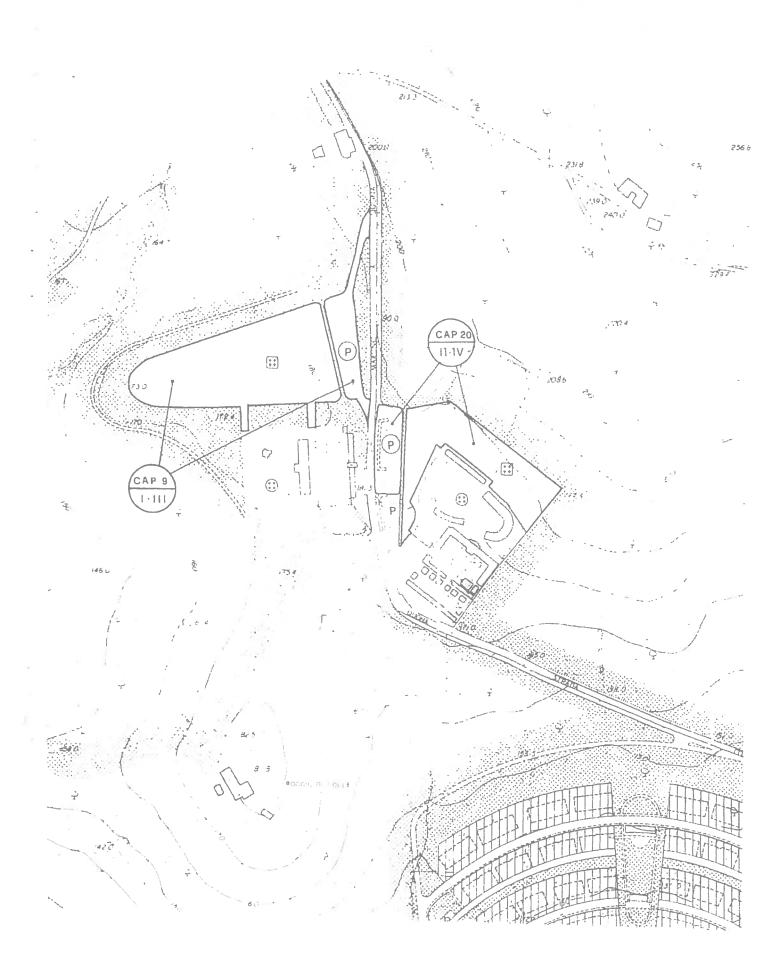

Data marzo 2001

Sondaggio n.

1

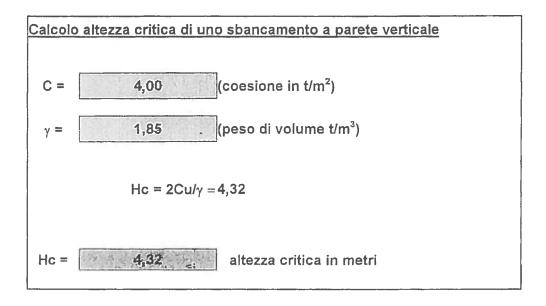

Attrezzat	tura e m	etodo	di perfora	zione:	Sonda a rotazio	one						I ACQUA			
Camp	ione ric	naneg	giato		Campione a percussione	○ LEFRAN	С	PR	OFONDI est.	TA' m Foro	SERA Data	Н	MA Data	TTINO	Н
	lone S.I				Campione ind. a pression	e Prova d	i permeabilita								
Camp	olone da	Vana	Test		Campione ind. rotativo	LUGEON	ī								
		ACCURATE STREET												_	
	T											1	3 44		T
Quota di riferim. m	Spessore	Profondila'	Sezione	Campioni	DESCRIZION	e litologica	Carottar	R I v e s t i m e n t	P 2	E C D	P 8 8 10 M 10	Profondita'	S D . H	F	% c s r s t s s s s s s s s s s s s s s s s
L	1,00	1,00	***		Limi argiilesi con porzioni s	sabbiose e frammenti calcarel. Molto	alterati.			×					9
	3 00	4,00 +	5 5 5	00	Lími argillosi grigi con nodu	uletti calcarel, più o meno alterati									
	6,00		51,19,15,19,15,18,18,1		Argille limose da consisten minore consistenza. Talora componente sabbiosa	iti a moito consistenti con qualche livi I sono presenti livelletti con una certa	ello di					5 90	10 22 15		
S	2,00	2 00			Marne arg⊪lose molto alter	ate					STORY AND ADMINISTRATION OF THE PROPERTY OF TH	12 00	43 R R		
	1,00	3.00			Argille limose moito consis	tenti con ilvelli calcarei						1000			
	2,00	5 00			Argiiliti e mame dure										
		mendamentation part — des medicas de medica describates de medicas de serviciones e sego.										15 00	KRR		


STRATIGRAFIE SONDAGGI


Ubicazione indagini (rappresentazione non in scala)

- Ubicazione sondaggio attrezzato con inclinometro
- Ubicazione sondaggio attrezzato con piezometro

- Sistema drenante mediante trincee con scarico razionale con profondità di circa 3
 4 m dal p.c. in modo da migliorare le caratteristiche di stabilità e permettere un abbattimento della falda al disotto della quota di inumazione. Nella porzione più a valle del previsto campo di inumazione(circa 6 m) dove si hanno spessori di copertura maggiori potranno essere allestiti dei pozzi drenanti.
- Paratia di pali, eventualmente intirantata, da realizzarsi prima di eseguire gli sbancamenti necessari alla realizzazione dei nuovi loculi. La paratia sarà progettata in modo da garantire anche il drenaggio delle acque.


Il tutto è meglio esemplificato nel progetto di massima allegato cui si rimanda per la definizione del quadro economico.

Per quanto riguarda le fondazioni dei manufatti in fase di progettazione esecutiva si potrà procedere ad una verifica dei dati acquisiti e quindi procedere ad un corretto dimensionamento delle strutture di fondazione una volta noti i carichi di esercizio previsti. Si ritiene comunque fin d'ora che dovranno essere prese in considerazione tipologie di fondazione che distribuiscano i carichi su un'ampia superficie (platea) o, qualora i carichi previsti siano elevati, che li distribuiscano in profondità su terreni litoidi di maggiore consistenza.

Un discorso infine per il terreno che costituisce il campo di inumazione. Come risulta dalla analisi granulometrica eseguita il terreno è prevalentemente argilloso con frammenti e blocchi lapidei, quindi scarsamente permeabile per quanto si sia visto come sia possibile l'instaurarsi di una circolazione idrica che risente delle variazioni meteoriche e stagionali. Di norma i campi di inumazione dovrebbero essere costituiti da terreni incoerenti sufficientemente asciutti ed areati, permeabili al punto da consentire la dispersione dei prodotti della putrefazione e delle acque di dilavamento garantendo la mineralizzazione dei cadaveri. In realtà, come detto, il terreno in oggetto, seppure vi si riscontri una certa presenza locale di materiali grossolani, è prevalentemente argilloso e quindi non del tutto confacente. Si ritiene perciò, ai sensi del capo X art. 57, punto 6 del D.P.R. 285/90 in fase di progettazione esecutiva si debba prendere in considerazione la possibilità di ricreare artificialmente le condizioni ideali arricchendo detti terreni con materiali incoerenti dotati di migliori qualità drenanti.

Pontassieve, 14 ottobre 2002

Geologo Berratti Dott. Enrice Focard 15 10 O.G.T no 47 10 0 0 0 0 0

Le verifiche di stabilità con metodi analitici sono state eseguite in tre situazioni diverse: allo stato attuale, dopo lo sbancamento e dopo lo sbancamento con opera di protezione. La stratigrafia è stata inoltre differenziata nei due livelli A e B come dalle osservazioni dirette assumendo i parametri determinati in laboratorio. Le verifiche effettuate indicano come allo stato attuale il tratto di versante in oggetto risulti stabile, mentre con lo sbancamento abbiamo una notevole diminuzione di Fs, anche senza tenere conto di eventuali innalzamenti della falda e di un progredire dei fenomeni di alterazione, non inferiore a 1, ma al disotto del valore di Legge (1.3). Con la realizzazione di un'opera di contenimento (pali di medio diametro) si riporta il coefficiente di sicurezza a valori superiori ai minimi di Normativa.

Conclusioni ed opere di bonifica e consolidamento

Dagli studi effettuati risulta che in sostanza le attuali condizioni del versante per il tratto in esame sono buone.

Risulta altresì che le oscillazioni della falda, in particolare quelle rilevate in corrispondenza di P5 possono arrivare ad interessare la quota di inumazione e si è verificato come oscillazioni del livello freatico possono indurre fenomeni di instabilità. Si rende quindi necessario un abbattimento e controllo della falda.

Gli sbancamenti previsti per la realizzazione dei loculi necessitano di opere di contenimento.

Quindi, per migliorare le condizioni del versante ante e post operam si prevede quanto segue:

Per effettuare tale verifica si è considerato uno spessore medio dell'orizzonte superficiale più alterato pari a 5 m. I risultati ottenuti indicano che il pendio è stabile ($F_s > 1.3$) nel caso si utilizzino i parametri di laboratorio (ϕ ' = 18°, c' = 0.1 kg/cm² e γ = 1.8 t/m³) in condizioni asciutte, mentre diventa instabile (F_s prossimo a 1 e minore di 1.3) nel caso di imbibizione (risalita della falda ovvero diminuzione del rapporto h/H) ed ulteriore alterazione (diminuzione della coesione). Tali risultati possiamo osservarli nelle tabelle allegate dove viene riportata la variazione del coefficiente di sicurezza F_s in funzione dell'angolo di pendio (nel nostro caso abbiamo una pendenza di circa il 14 – 15% che corrisponde ad angoli di pendio di circa 10°) e della variazione del rapporto fra h (profondità della falda) e H (profondità del substrato).

Metodi analitici (zona sbancamento)

Nella zona ove è prevista la realizzazione dei nuovi loculi sono state effettuate le verifiche di stabilità sia valutando l'altezza critica a breve termine di uno sbancamento a parete verticale che con metodi analitici al calcolatore (software Soils di Program Geo – Brescia) per una più completa trattazione a lungo termine.

Come si vede nella seguente tabella l'altezza critica dello sbancamento con i parametri medi utilizzati è di circa 4 m, quindi non abbiamo garanzia di stabilità a breve termine per sbancamenti di ordine superiore come previsto dal progetto.

Verifiche di stabilità

Per effettuare le verifiche di stabilità è stata assunta una acclività media del pendio di circa il 14% che corrisponde grosso modo ai tratti più acclivi. La stabilità è stata analizzata con le equazioni del pendio illimitato per quanto riguarda la porzione a nord del lotto ove verrà realizzato il campo di inumazione, e con metodi analitici (Janbu e Bishop) oltre che con Taylor per la stabilità dei fronti di scavo, in corrispondenza delle previste aree di sbancamento per la realizzazione dei loculi.

Pendio illimitato(zona campo di inumazione)

Tale metodo si applica nell'ipotesi di una frana di scorrimento allungata dove in genere l'influenza del piede e della testa sono trascurabili. Si tratta di movimenti estesi tipici di pendii ove la coltre superficiale, alterata, si mobilita scorrendo, più o meno lentamente verso valle con flusso parallelo alla superficie, su un substrato, in questo caso coerente, posto ad una certa profondità.

Per il calcolo del coefficiente di sicurezza può essere usata l'espressione:

$$Fs = \frac{c'}{(h_w \times \gamma_{sat} + \gamma \times h) \times sen\alpha \times cos\alpha} + \frac{(h_w \times \gamma' + \gamma \times h) \times tg\varphi}{(h_w \times \gamma_{sat} + \gamma \times h) \times tg\alpha}$$

Dove:

α (°) inclinazione del pendio

φ' angolo di attrito interno efficace

c' coesione efficace

y peso di volume

γ' peso di volume immerso

γ_{sat} peso di volume saturo

H spessore dell'orizzonte superficiale

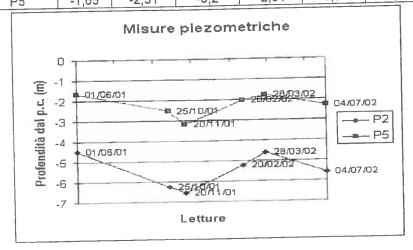
h profondità della falda

 h_W altezza della falda (H - h)

Lo schema seguente esemplifica la geometria di calcolo:

I principali dati geomeccanici acquisiti con la recente (2001) campagna geognostica eseguita per questo studio ai sensi della L.R. 94/85 e L.R. 05/95 di supporto alla variante urbanistica per l'ampliamento del complesso cimiteriale si riportano nella seguente tabella:

Riepilogo analisi di laboratorio mag-01 Loc. Cimitero della Misericordia - Pontassieve


Campione	Profondità (m)	W %	LL	LP	lp	lc	Cas.	γ t/mc	Cu kg/cmq	φ, ο	C' kg/cmq
S1.C1		26,78		28	18,6	1,12	ML-OL	1,97	0,54	1.	955
S2.C1		28,38		24,1	36	0,88	СН	1,85		18	0,18
S3.C1		36,25		29,4	38,8	0,82	CL	1,8		18	0,26
S3.C2		34,59	personal distance			17.72	Sec.	1,86	0,34		
S3.C3	8	18,52		19,8	23,2	1,05	CL	2,11			
S4.C1	4,5	15,08		23,9	23,4	1,38	CL	2,12	1,44		
S5.C1	2	21,3	_		41,2	1,09	Н	1,98			7.03

Misure inclinometriche

Vista la classe di pericolosità e fattibilità assegnata dallo Strumento Urbanistico (P4 – F4) la zona è stata monitorata mediante la messa in opera di tre inclinometri posizionati rispettivamente in corrispondenza dei sondaggi S1, S3 e S4. Sono state eseguite misure dall'aprile 2001 all'aprile 2002. Come risulta dagli elaborati allegati gli spostamenti sono inferiori al millimetro, quindi di scarso significato, e non seguono un trend direzionale univoco e compatibile con l'orientamento del pendio. Non sono quindi stati evidenziati movimenti gravitativi o superfici di scorrimento di falde instabili. Gran parte dei movimenti sono probabilmente da attribuire a fenomeni intrinseci alla natura argillosa dei terreni presenti.

Misure piezometriche

Data 01/06/01 25/10/01 20/11/01 20/02/02 28/03/02	04/07/02
P2 -4.48 -6.27 -6.55 -5.21 -4.6	-5,6
P5 -1.65 -2.51 -3.2 -2.04 -1.78	-2,28

In sintesi si evince come nella zona nel suo insieme sia presente una estesa copertura di limi argillosi alterati sovrastanti marne argillose varicolori con livelli calcarei e calcareo marnosi. Lo spessore della copertura varia a seconda della posizione e si vede come vi siano spessori maggiori sul ripiano ove sono posizionati i sondaggi S1 e S2 (zona ampliamento loculi) ed all'interno dell'area cimiteriale attuale (S3), mentre nella porzione settentrionale (area futuro campo di inumazione) gli spessori tendono a diminuire.

In generale, al disotto di un primo livello costituito da suolo e/o riporti che ha uno spessore di circa 1.0 - 1.5 m, possiamo ricostruire il seguente schema stratigrafico:

- A: argille e limi argillosi, molto alterati, di media consistenza, con spessore da 3 a 6 m. E' assente in S4 (sondaggio posizionato nella porzione più a monte). Il colore varia da giallastro a grigio giallastro con screziature biancastre.
- B: limi argillosi di colore da grigio a grigio verdastro con screziature rossastre, da consistenti a molto consistenti (N_{SPT} = 22). Sono presenti livelletti marnosi alterati e si riconoscono talvolta tracce residue di organizzazione. Lo spessore di questo orizzonte varia fra i 3 ed i 6 m. Non si riconosce, o è di potenza molto limitata, in S5 che è ubicato nella zona di valle del lotto in oggetto.
- C: substrato costituito da argilliti e marne di colore da grigio turchino a rosso vinaccia, con livelli calcarei, di consistenza definibile "dura" (N_{SPT} a rifiuto).

Caratteristiche tecniche ed analisi di laboratorio

Per quanto riguarda i parametri geotecnici dei terreni in oggetto dall'esame dei dati a disposizione (da varie campagne eseguite da Geotecno, Geoeco, S.T.G., Focardi E., Focardi E. e Innocenti G.) possiamo ricostruire la seguente schematizzazione:

copertura :	peso di volume	$\gamma \approx 1.7 - 2.0 \text{ t/m}^3$			
	coesione non drenata	$c_u\approx 0.5\text{ - }0.9\text{ kg/cm}^2$			
	coesione drenata	$c' \approx 0.1 - 0.3 \text{ kg/cm}^2$			
substrato :	angolo d'attrito interno	ϕ ' $\approx 16^{\circ} - 20^{\circ}$			
	modulo edometrico	$E \approx 50 - 60 \text{ kg/cm}^2$			
	peso di volume	$\gamma \approx 1.9 - 2.1 \text{ t/m}^3$			
	coesione non drenata	$c_u \approx 1.0 - 1.5 \text{ kg/cm}^2$			
	coesione drenata	$c' \approx 0.2 - 0.5 \text{ kg/cm}^2$			
	angolo d'attrito interno	ϕ ° ≈ 20 ° - 25°			
	modulo edometrico	$E \approx 170 - 180 \text{ kg/cm}^2$			

Il grado di plasticità è in genere elevato per tutti questi materiali (CL - CH nella Carta di Plasticità di Casagrande).

Si tratta per lo più di corsi d'acqua a carattere stagionale ai quali si aggiungono numerosi altri rivi a carattere effimero, cioè linee di impluvio o di drenaggio che portano acqua solo in occasione di eventi piovosi di una certa consistenza. Il corso posto più a monte, che da Poggio Bardellone decorre in direzione sud ovest verso l'Arno dove vi confluisce nei pressi de "I Veroni", è da considerarsi perenne almeno per il tratto a valle di Podere Forniola.

Nel corso di vari studi nella zona sono stati individuati cinque pozzi ed una sorgente. I pozzi sono destinati probabilmente alla irrigazione dei campi o dei pochi orti presenti. Di questi solo due sono vicini alla zona in oggetto, uno è di proprietà della Misericordia stessa e viene utilizzato nell'ambito cimiteriale, l'altro pozzo e la sorgente sono posti poco a monte dell'area di intervento. All'interno del complesso cimiteriale risulta la presenza di un pozzo drenante che fu realizzato in passato come punto raccolta di una trincea drenante necessaria alla bonifica di una porzione di cimitero per la realizzazione di nuovi loculi.

Nel corso della recente campagna geognostica sono stati installati due piezometri per il controllo della profondità della falda. Le misure eseguite mostrano l'andamento illustrato nei seguenti schemi

Acclività

Come si vede nella carta delle pendenze realizzata in scala 1:2.000, l'area in studio è praticamente tutta compresa all'interno della classe 1 dove le pendenze sono inferiori al 15%, a meno di una piccola porzione al margine nord occidentale dove abbiamo una classe 2 (15%<P<25%). Bisogna però tenere presente che nella cartografia di riferimento è presente solo l'antico nucleo del cimitero e che in realtà gran parte dell'area contornata è stata modificata per successivi ampliamenti. Per le aree di interesse possiamo comunque assumere come valide le classi citate, più in particolare per quanto riguarda l'area del futuro campo di inumazione la pendenza, calcolata sulla base degli ultimi rilievi eseguiti (luglio 2002), varia all'incirca il 9% ed il 13 % ad eccezione che per le zone di scarpata.

INDAGINI GEOGNOSTICHE E STABILITÀ

Sondaggi

Sono stati eseguiti cinque sondaggi a carotaggio continuo fino ad una profondità di 15 m dal p.c. ubicati come nella planimetria allegata. Dei cinque sondaggi si allegano le stratigrafie di dettaglio.

del 15 – 20%. IL versante si fa più acclive man mano che si procede verso monte, fino ad arrivare alle asperità del rilievo che da Podere Faese (quota 245.8 m s.l.m.) sale verso quota 377.4 m s.l.m. al culmine di un piccolo rilievo secondario nei pressi di Casa Bardellone (quota 363.4 m s.l.m.).

Il cimitero è stato ampliato più volte nel tempo per cui la zona è stata interessata da varie modificazioni e sistemazioni di origine antropica che hanno alterato la morfologia dell'originario declivio. L'area cimiteriale è interessata da vari anni da fenomeni di dissesto che si manifestano con avvallamenti in alcune zone pavimentate, lesioni sulle strutture murarie, distacchi di cordolature, ecc. Secondo diversi studi geologici svolti sul posto (a partire da Geotecno, 1982) i dissesti sono imputabili ad un lento movimento della coltre superficiale, molto alterata, che scorre al contatto con il substrato più consistente che mediamente si ritrova fra i 3 ed i 4.5 – 5.0 m dal p.c.. Il movimento sembra essere conseguente ad una eccessiva imbibizione dei materiali appartenenti a questa coltre superficiale a causa dell'incontrollato divagare delle acque di falda per l'obliterazione di un piccolo impluvio che agiva da dreno per la zona nel suo insieme. L'interruzione del dreno centrale ha provocato il diffondersi dell'acqua nelle aree adiacenti dando luogo al processo di ammollimento e mobilizzazione della copertura.

Bisogna dire che i fenomeni descritti interessano principalmente l'area riguardante il vecchio nucleo del cimitero ed alcuni ampliamenti risalenti agli anni '70, mentre l'area in esame è ubicata a monte e sul lato occidentale dove non sembrano evidenti fenomeni di dissesto (come vedremo anche dall'esame dei risultati delle misure inclinometriche).

Nella carta in scala 1:10.000 allegata, redatta secondo i tipi della Carta Geologica d'Italia in scala 1:100.000, foglio 106 "Firenze", viene riportata la geologia della zona. Come si vede il Cimitero è impostato sui litotipi appartenenti alla formazione del Complesso Indifferenziato (porzione attualmente attribuita alla Formazione di Sillano come riportato nella Carta Geolitologica in scala 1: 2.000): argille ed argilliti grigio scure con subordinate intercalazioni calcaree in assetto spesso mal definibile. Verso est (Poggio Bardellone) ed a sud (Poggio al Colle) affiorano invece i litotipi calcarei della formazione dell'Alberese, evidenziati anche da una morfologia ben più aspra ed acclive.

L'area cimiteriale è coperta da una estesa coltre di materiali di origine eluvio colluviale, costituiti da limi argillosi di colore marrone giallastro con inclusi elementi lapidei prevalentemente calcarei.

Caratteri Idrologici

L'idrografia locale è guidata dal fiume Arno verso il quale confluiscono i vari tributari presenti su questo tratto di versante. Questi ultimi sono impostati grosso modo secondo linee sub parallele con direzione nord est - sud ovest.

Rapporto di prova n. 14/08 - Committente: Confrat. Misericordia

Località: Quona Data origine: 27/04/01 Correzione azimutale: 214°

Quota testa tubo: 0,00 Tipo Sonda: Segea MK4

Calcolo dal basso dell' Azimut, in gradi (differenziale per punti)

TUBO I1 Prof. (m)	Misura del 05/07/01	20/11/01	05/04/02	31/03/05	23/11/07
0 -0,5 -1 -1,5 -2 -2,5 -3,5 -4 -4,5 -5 -5,5 -6 -6,5 -7 -7,5 -8 -8,5 -9 -9,5 -10 -10,5 -11 -11,5 -12 -12,5	35,23 39,54 45,05 56,00 59,58 63,13 56,00 82,57 146,00 326,00 101,00 82,57 101,00 56,00 82,57 101,00 101,00 119,44 352,57 56,00 37,57 119,44 82,57 56,00	44,47 51,36 62,65 75,98 68,99 64,13 97,63 101,00 101,00 287,34 41,96 146,00 22,31 37,57 37,57 19,13 299,44 299,44 326,00 347,80 352,57 299,44 109,13 326,00 326,00	341,07 336,31 64,13 86,96 1,54 317,87 29,44 74,44 352,57 11,00 310,05 356,96 359,69 56,00 11,00 29,44 4,66 217,57 299,44 326,00 352,57 349,20 236,00 96,91 262,57 314,69	29,76 36,71 49,66 66,01 179,69 248,34 234,88 196,91 191,00 101,00 272,87 236,00 0,00 0,00 256,56 236,00 191,00 310,75 120,80 135,70 217,57 146,00 312,76 70,04 164,44	68,34 123,07 200,73 205,62 211,34 220,48 158,99 322,19 309,30 356,65 328,49 42,76 59,18 70,04 52,53 344,44 210,98 269,34 299,12 333,28 341,95 132,92 137,87 203,99 254,44 226,54
-13 -13,5 -14	101,00 101,00 11,00	281,00 344,44 326,00	326,00 356,96 326,00	56,00 326,00 191,00	101,00 352,57 188,27

Rapporto di prova n. 14/08 - Committente: Confrat. Misericordia

Località: Quona Data origine: 27/04/01 Correzione azimutale: 214°

Quota testa tubo: 0,00 Tipo Sonda: Segea MK4

Calcolo dal basso dell' Azimut, in gradi

TUBO I1 Prof. (m)	Misura del 05/07/01	20/11/01	05/04/02	31/03/05	23/11/07
0 -0,5	49,66 55,27	54,04 57,43	7,95 15,21	9,09 230,56	197,95 206,84
-1	61,51	59,59	19,78	222,23	211,80
-1,5	67,58	58,34	12,55	224,47	213,81
-2	70,66	50,45	359,69	228,45	218,49
-2,5	74,08	39,47	359,45	234,97	229,48
-3	76,10	32,25	3,79	226,63	259,63
-3,5	79,20	22,31	0,82	218,90	292,98
-4	78,48	6,16	354,44	231,24	258,62
-4,5 -5	77,04	0,44	354,52	239,69	167,80
-5,5	76,56 72,26	358, 5 7 7,05	353,10 359,69	247,00 243,13	173,65 165,49
- 6	76,56	3,48	0,11	236,00	176,10
-6,5	75,18	2,57	0,16	236,00	186,46
- 7	74.44	0,59	354.18	236,00	198,91
-7,5	72,70	357,26	351,64	236,00	206,90
-8	74,44	353,41	348,62	228,88	203,44
-8,5	73,35	348,62	343,53	227,87	202,44
-9	70,93	352,57	350,23	236,00	181,07
-9 ,5	68,09	356,96	0,51	199,75	155,85
-10	60,40	359,69	2,25	250,62	155,29
-10,5	70,04	3,57	5,29	270,22	155,50
-11	72,70	7,63	22,31	287,34	172,19
-11,5	85,75	18,13	41,07	292,31	228,50
-12	74,44	326,00	326,00	184,66	236,00
-12,5	70,04	326,00	333,13	199,13	217,57
-13	74,44	326,00	341,26	219,30	191,00
-13,5	56,00	334,75	344,44	220,75	200,46
-14	11,00	326,00	326,00	191,00	188,27

Località: Quona Data origine: 27/04/01

Correzione azimutale: 214°

Quota testa tubo: 0.00 Tipo Sonda: Segea MK4

Calcolo dal basso della Risultante, in mm

TUBO I1 Prof. (m)	Misura de 05/07/01	l 20/11/01	05/04/02	31/03/05	23/11/07
0	E 49	0.40	2.00	4.00	7.00
	5,43	9,48	2,99	1,06	7,02
-0,5 -1	3,95 2,86	7,03 5,19	2,41 2,20	1,05	8,16
-1,5	2,12	3,68	1,96	2,63 3,75	8,11 6,88
- 2	1,68	2,59	1,89	4,56	4,40
-2,5	1,29	1,67	1,68	4,18	1,76
-3	1,09	1,37	1,55	2,61	0,44
-3,5	0,95	1,08	1,40	1,36	0,60
-4	0,78	1,05	1,36	0,90	0,32
-4,5	0,70	1,06	1,31	0,78	0,40
-5	0,64	1,07	1,21	0,92	1,19
-5,5	0,63	1,03	1,08	0,81	1,72
-6	0,64	0,95	0,94	0,88	1,99
-6,5	0,61	0,97	0,85	0,80	2,23
-7	0,55	0,88	0,79	0,80	2,57
-7,5	0,52	0,82	0,69	0,80	3,29
-8	0,47	0,76	0,65	0,60	3,53
-8,5	0,42	0,65	0,50	0,53	3,12
-9	0,39	0,61	0,55	0,45	2,87
-9,5	0,36	0,58	0,49	0,47	4,24
-10	0,33	0,54	0,47	0,59	5,42
-10,5	0,31	0,41	0,36	0,76	5,60
-11	0,26	0,30	0,18	0,64	3,40
-11,5	0,20	0,29	0,39	0,72	1,92
-12	0,16	0,48	0,43	0,32	1,50
-12,5	0,10	0,45	0,40	0,38	0,79
-13	80,0	0,38	0,29	0,26	0,21
-13,5	0,05	0,33	0,24	0,29	0,22
-14	0,04	0,18	0,10	0,39	0,37

Rapporto di prova n. 14/2008

SETTORE: prove in situ

COMMITTENTE:

Confraternita della Misericordia

LAVORI:

di letture inclinometriche

LOCALITA':

Cimitero di Pontassieve

Prove eseguite

Letture inclinometriche:

lettura zero	27/04/2001	II - profondità 14.00 m
lettura n.1	05/07/2001	I3 - profondità 14.00 m
lettura n.2	20/11/2001	
lettura n.3	05/04/2002	
lettura n.4	31/03/2005	
lettura n.5	23/11/2007	

Lo sperimentatore

11.1.2 37

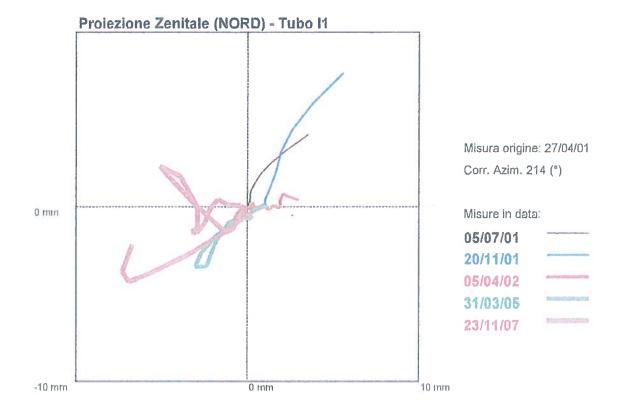
Il direttore del Laboratorio
Ing. Francesco Politi
Francesco Politi

Ubicazione indagini (rappresentazione non in scala)

- Ubicazione sondaggio attrezzato con inclinometro
- O Ubicazione sondaggio attrezzato con piezometro

PROVINCIA DI: FIRENZE

COMUNE DI: PONTASSIEVE


LOCALITÀ: VIA SAN MARTINO A QUONA CIMITERO DELLA MISERICORDIA

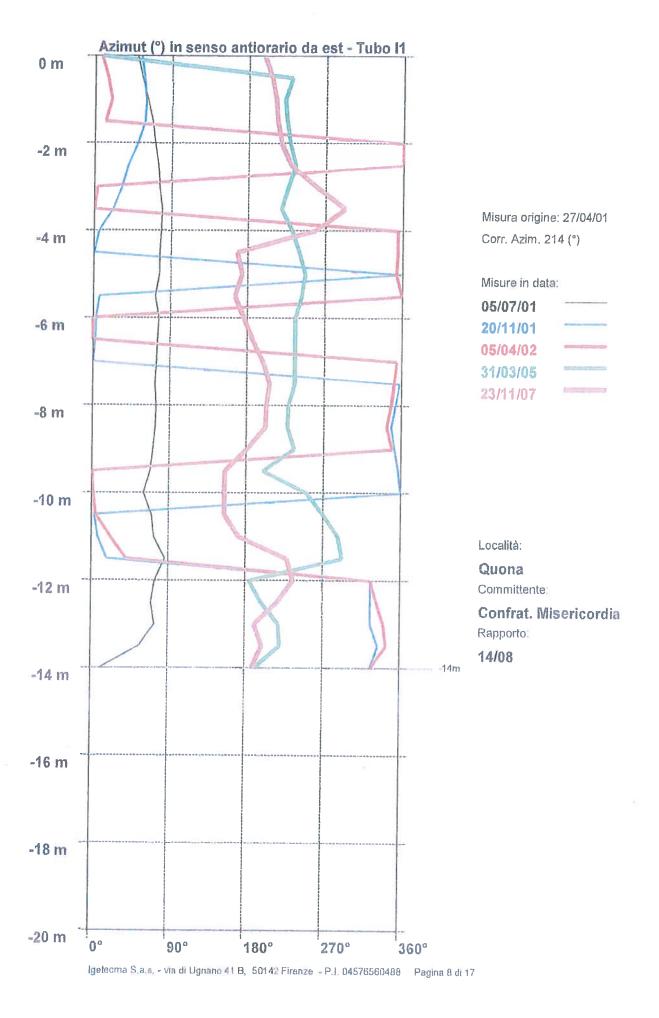
PROPRIETÀ: VENERANBILE CONFRATERNITA DELLA MISERICORDIA

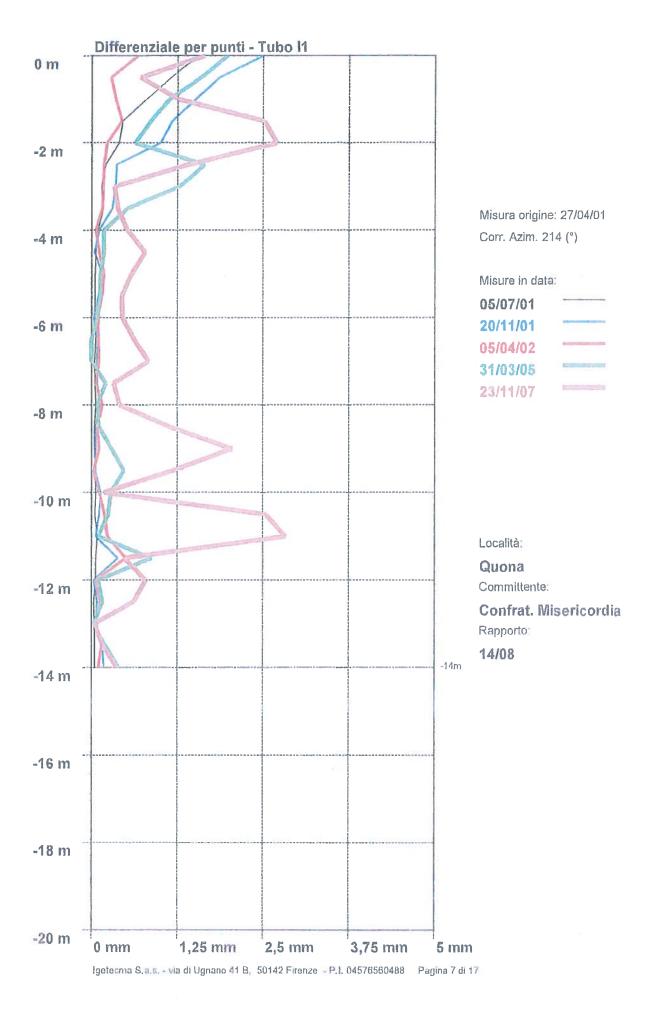
OGGETTO: PROGETTO DI PIANO ATTUATIVO PER L'AMPLIAMENTO DEL CIMITERO

COLLABORATORI: DOTT. P. INNOCENTI O.G.T. N° 330	ELABORATO N°I	RELAZIONE GEOLOGICO – TECNICA R.A art. 62 L.R. 3 gennaio 2005
---	------------------	---

	REVISIONE	DATA	REDATIO	CONTROLLATO	APPROVATO
		Marzo 2008	E.F.	P.I.	DOTT, E. FOCARDI
-					O.G.T. Nº 471
l	d archite strong one was Antiferrories species on a granula delta delendraje gangspecies y			promotestical polytical continuous materials in the second state of the property of the second state of the second	

Località:


Quona


Committente:

Confrat. Misericordia

Rapporto:

14/08

Località: Pontassieve Data origine: 27/04/01 Correzione azimutale: 216°

Quota testa tubo: 0.00 Tipo Sonda: Segea MK4

Calcolo dal basso dell' Azimut, in gradi

TUBO 13 Prof. (m)	Misura del 05/07/01	20/11/01	05/04/02	31/03/05	23/11/07
0	134,33	133,29	164,56	239,83	214,37
-0,5	107,47	47,10	136,88	305,36	250,80
-1	105,63	46,82	136,41	302,63	255,62
-1,5	101,94	46,88	137,21	300,25	261,65
-2	100,59	47,90	134,31	298,50	264,66
-2,5	98,12	47,26	138,14	296,45	266,86
-3	96,09	45,29	135,63	296,32	268,36
-3,5	95,01	43,61	140,31	293,04	269,58
-4	89,54	43,35	141,80	291,53	270,64
-4,5	89,84	45,03	144,00	289,71	269,32
-5	88,51	42,69	153,09	287,84	269,95
-5,5	86,74	43,00	160,70	286,50	268,85
-6	82,30	41,41	166,38	286,85	271,01
-6,5	73,98	41,80	137,29	289,42	272,94
-7	60,34	42,69	136,88	289,42	274,03
-7,5	38,0 5	39,45	152,13	288,02	274,16
-8	17,13	38,85	181,57	285,39	274,14
-8,5	357,69	37,97	187,03	284,94	273,16
-9	290,31	38,36	197,13	287,13	270,36
-9,5	279,00	39,77	196,43	293,49	269,26
-10	272,66	39,96	197,47	311,47	258,91
-10,5	267,69	43,38	194,39	350,57	216,90
-11	267,69	46,53	194,19	34,02	185,19
-11,5	264,96	53,09	180,25	65,31	136,41
-12	255,80	50,93	179,54	58,76	114,95
-12,5	248,04	38,62	234,00	357,69	350,57
-13	234,00	35,57	297,44	16,43	15,01
-13,5	267,69	35,57	17,13	18,25	21,99
-14	279,00	30,80	189,00	22,39	31,38

Località: Pontassieve Data origine: 27/04/01 Correzione azimutale: 216°

Quota testa tubo: 0.00 Tipo Sonda: Segea MK4

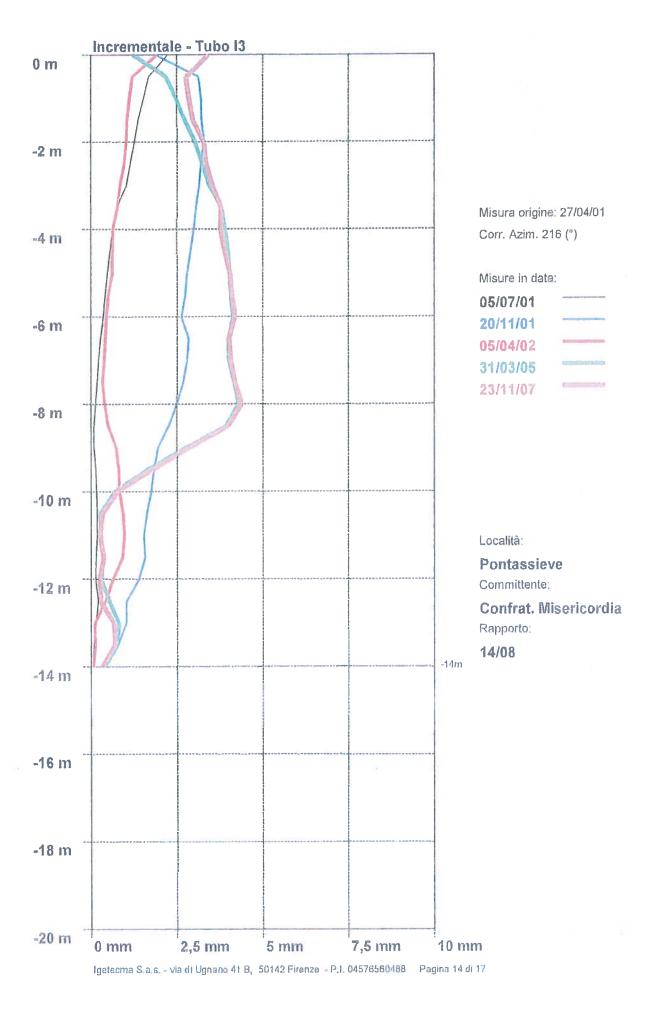
Calcolo dal basso della Risultante, in mm

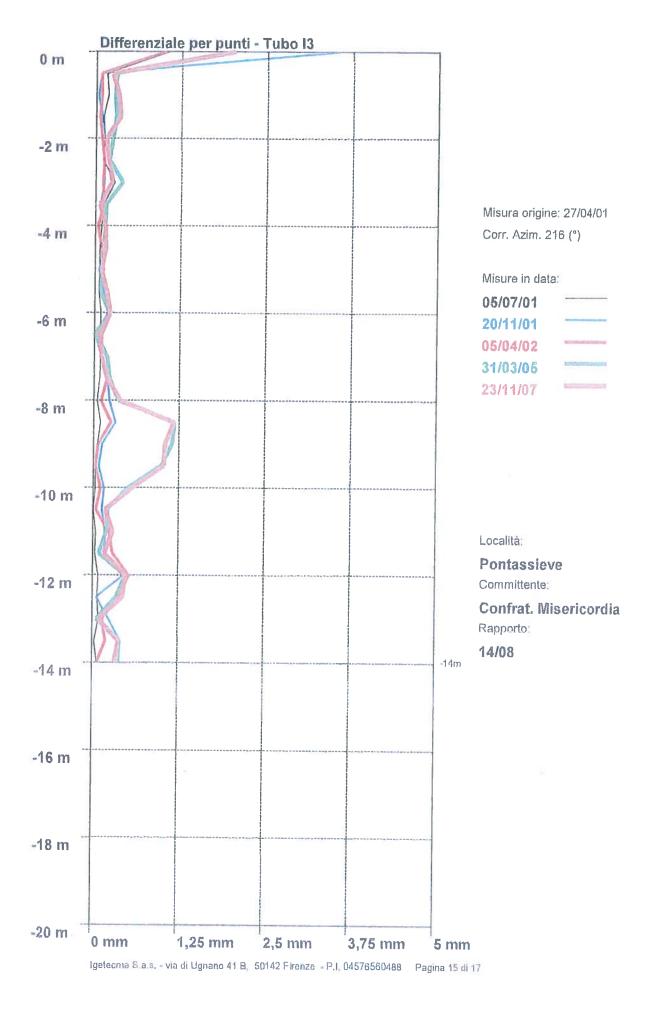
TUBO 13 Prof. (m)	Misura del 05/07/01	20/11/01	05/04/02	31/03/05	23/11/07
0 -0.5 -1 -1.5 -2 -2.5 -3 -3.5 -4 -4.5 -5 -5.5 -6 -6.5 -7 -7.5 -8 -8.5 -9 -9.5 -10 -10.5 -11 -11.5 -12 -12.5 -13	2,23 1,68 1,53 1,38 1,27 1,15 1,04 0,76 0,65 0,49 0,42 0,37 0,29 0,23 0,18 0,09 0,09 0,14 0,16 0,18 0,18 0,15 0,13	1,88 3,12 3,20 3,22 3,29 3,20 3,14 3,05 2,98 2,89 2,80 2,75 2,64 2,80 2,69 2,49 2,26 1,95 1,83 1,75 1,63 1,54 1,04 1,03	1,92 1,21 1,13 1,06 1,04 0,98 0,86 0,78 0,65 0,63 0,52 0,40 0,35 0,40 0,35 0,41 0,51 0,75 0,82 0,84 0,94 0,98 0,98 0,98 0,98	1,23 2,19 2,47 2,73 3,02 3,24 3,44 3,79 3,91 3,99 4,03 4,07 4,14 4,01 4,01 4,01 4,01 4,01 4,01 4,01	3,42 2,77 2,85 2,96 3,28 3,36 3,54 3,77 3,89 4,05 4,11 4,20 4,02 4,08 4,19 4,38 4,00 2,83 1,78 0,77 0,34 0,27 0,38 0,26 0,28 0,68
-13,5 -14	0,09 0,07	0,79 0,38	0,13 0,07	0,77 0,38	0,71 0,33

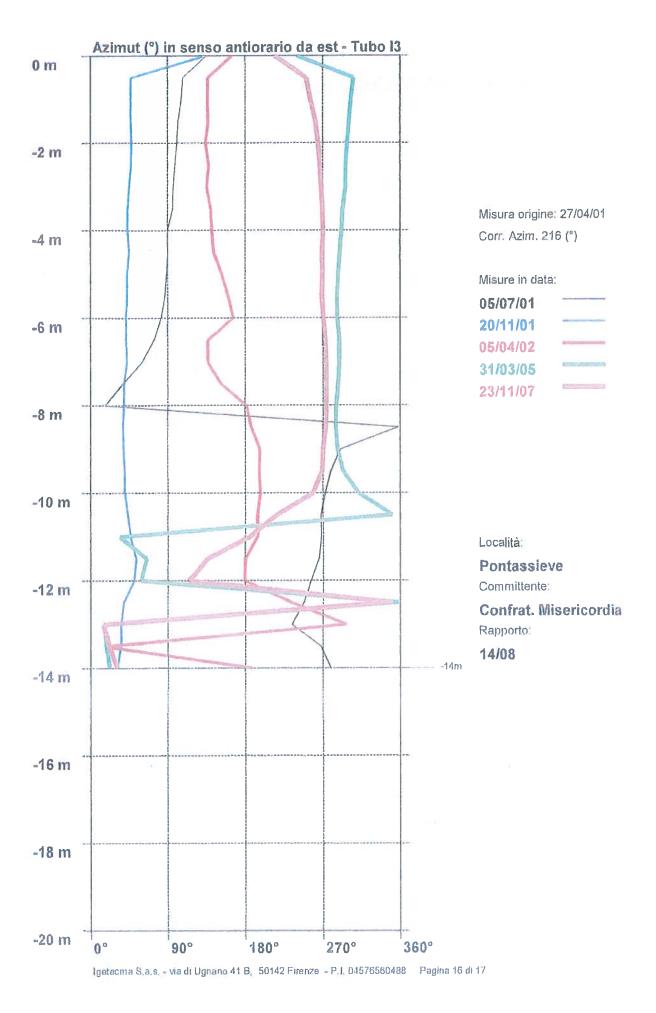
Località: Pontassieve Data origine: 27/04/01 Correzione azimutale: 216°

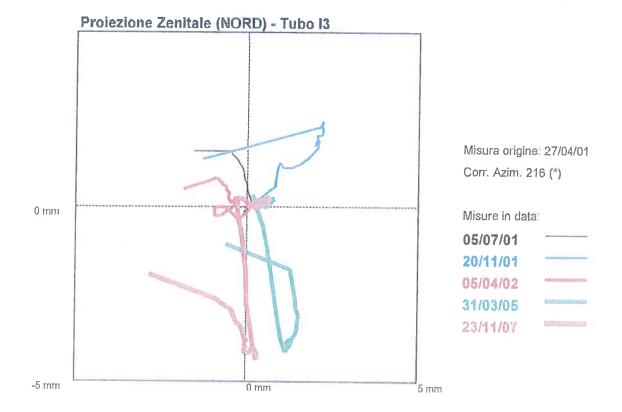
Quota testa tubo: 0.00 Tipo Sonda: Segea MK4

Calcolo dal basso dell' Azimut, in gradi (differenziale per punti)


TUBO 13 Prof. (m)	Misura de 05/07/01	20/11/01	05/04/02	31/03/05	23/11/07
0	180,33	195,02	197,97	159,07	160,43
-0,5	125,57	215,57	144,00	102,37	144,00
-1	135,87	234,00	125,57	99,00	148,40
-1,5	117,44	267,69	207,44	102,37	110,31
-2	122,20	68,04	87,69	90,87	144,00
-2,5	117,44	107,13	155,31	114,26	114,26
-3	99,00	90,87	99,00	83,75	107,13
-4 -4,5 -5	122,20 87,69 99,00 99,00	54,00 0,87 99,00 27,44	132,69 99,00 54,00 122,20	72,44 54,00 32,20 39,96	189,00 54,00 105,34 39.96
-5,5	117,44	75,80	125,57	125,57	152,13
-6	110,31	226,88	234,00	234,00	234,00
-6,5	110,31	350,57	144,00	0,00	144,00
-7	110,31	93,81	80,57	77,20	99,00
-7,5	72,44	46,88	61,13	47,66	93,81
-8	54,00	47,66	27,44	290,31	284,19
-8,5	54,00	35,57	37,30	279,86	279,86
-9	80,57	17,13	9,00	278,12	272,23
-9,5	54,00	35,57	54,00	281,05	277,03
-10	54,00	2,66	350,57	291,09	282,58
-10,5	0,00	0,87	9,00	279,00	267,69
-11	279,00	308,05	266,01	294,26	271,88
-11,5	324,00	69,95	181,88	87,69	170,57
-12	54,00	80,57	138,56	144,00	144,00
-12,5	279,00	117,44	219,07	225,87	210,37
-13	200,31	35,57	243,46	350,57	267,69
-13,5	234,00	39,96	14,19	14,19	14,19
-14	279,00	30,80	189,00	22,39	31,38


Località: Pontassieve Data origine: 27/04/01 Correzione azimutale: 216°


Quota testa tubo: 0,00 Tipo Sonda: Segea MK4


Calcolo dal basso della Risultante, in mm (differenziale per punti)

TUBO 13 Prof. (m)	Misura del 05/07/01	20/11/01	05/04/02	31/03/05	23/11/07
Prof. (m) 0 -0,5 -1 -1,5 -2 -2,5 -3 -3,5 -4 -4,5 -5 -5,5 -6 -6,5 -7 -7,5 -8 -8,5 -9 -9,5 -10 -10,5 -11 -11,5 -12	05/07/01 1,06 0,16 0,18 0,11 0,13 0,11 0,28 0,13 0,09 0,07 0,07 0,06 0,09 0,09 0,09 0,09 0,09 0,09 0,09	20/11/01 3,54 0,08 0,03 0,09 0,10 0,13 0,13 0,14 0,06 0,13 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,13 0,13 0,18 0,18 0,18 0,45	1,02 0,08 0,08 0,09 0,13 0,11 0,13 0,04 0,10 0,13 0,08 0,23 0,03 0,11 0,20 0,11 0,26 0,07 0,03 0,11 0,26 0,07	2,02 0,30 0,28 0,30 0,25 0,20 0,40 0,16 0,15 0,10 0,08 0,23 0,00 0,19 0,23 0,36 1,18 1,15 0,99 0,51 0,21 0,20 0,09 0,48	2,03 0,25 0,33 0,36 0,15 0,20 0,25 0,07 0,15 0,16 0,10 0,18 0,23 0,10 0,11 0,20 0,39 1,18 1,05 1,03 0,57 0,18 0,29 0,17 0,48
-12,5 -13 -13,5 -14	0,07 0,09 0,03 0,07	0,06 0,24 0,41 0,38	0,39 0,15 0,20 0,07	0,35 0,06 0,39 0,38	0,44 0,09 0,39 0,33

Località:

Pontassieve

Committente:

Confrat. Misericordia

Rapporto:

14/08

Rapporto di Prova nº30/08/S

SETTORE: Geofisica - sismica a rifrazione con onde SH

COMMITTENTE: Confraternita della Misericordia di Pontassieve

D.L.: Geol. E. Focardi

CANTIERE: Cimitero di S. Martino a Quona, Pontassieve (FI)

RIFERIMENTO: R.P.E. n°24/08

Indice:

1. Scopo dell'indagine

- 2. Indagine mediante sismica a rifrazione
 - 2.1 Procedure di campagna
 - 2.2 Metodo di elaborazione dei dati
- 3 Presentazione dei dati
- 4 Risultati dell'indagine
- 5 Normativa sismica e calcolo del V_s30
- 6 Caratteristiche della strumentazione

Il Direttore del Laboratorio

Granel as Pells

Ing F Polifi

Il Tecnico

Geol. L. Gambassi

bleet Jancan.

Rapporto di	prova	n°30/08/S		
rapporto di	prova	n°30/08/S		

1 Scopo dell'indagine

Su incarico della Confraternita della Misericordia di Pontassieve e sotto la D.L. del Dott. Geol. E. Focardi è stata eseguita una campagna geofisica mediante sismica a rifrazione con onde SH presso il Cimitero di S. Martino a Quona, Pontassieve (FI).

Sono stati eseguiti n°2 profili di sismica a rifrazione con onde SH, utilizzando 24 canali con una spaziatura di 4 m, per un totale di 184 m di rilievo. L'ubicazione è stata decisa in accordo con la D.L. Scopo dell'indagine è stato il calcolo del parametro Vs30.

2 Indagine mediante sismica a rifrazione

2.1 Procedure di campagna

Vengono stesì i cavi sismici lungo la zona di interesse e ad essi vengono collegati i geofoni precedentemente infissi nel terreno alle equidistanze prestabilite.

La produzione di onde di taglio viene effettuata ponendo una trave di legno a diretto contatto con il terreno in senso trasversale al profilo ed energizzando su entrambi i lati dopo averla adeguatamente caricata, 'impatto rende operativo, tramite un accelerometro reso solidale con la fonte di energizzazione (trigger), il sistema di acquisizione dati, permettendo così la registrazione ai geofoni della forma d'onda rappresentativa della velocità di spostamento del suolo. Le registrazioni vengono effettuate alternativamente su entrambi i lati, mediante massa battente, e sommate con polarità scambiata in modo da migliorare l'individuazione dell'onda di taglio polarizzata orizzontalmente che viene generata. I

Al fine di ottenere una migliore risoluzione della sismo-stratigrafia, i punti di energizzazione, detti punti di scoppio (shot points), vengono disposti simmetricamente rispetto al profilo: ai suoi estremi (end), esternamente (offset) ed a distanze variabili entro il profilo stesso (punti di scoppio centrali).

La profondità di investigazione è, in linea teorica direttamente correlata alla lunghezza del profilo, alla distanza degli offset e soprattutto al contrasto di velocità dei mezzi attraversati. I tempi di arrivo delle onde sismiche nel terreno sono funzione della distanza tra i geofoni, delle caratteristiche meccaniche dei litotipi attraversati e della loro profondità.

2.2 Metodo di elaborazione dei dati

La procedura d'elaborazione dati consiste di due fasi: la lettura dei tempi d'arrivo ai vari geofoni dello stendimento per ciascuna energizzazione effettuata e la loro successiva elaborazione mediante metodi di calcolo.

I tempi di primo arrivo delle onde sismiche vengono riportati su diagrammi spazio-tempo (dromocrone) nei quali l'asse dei tempi ha l'origine coincidente con l'istante in cui viene prodotta l'onda sismica (to), mentre nelle ascisse si hanno le distanze relative fra i geofoni

dello stendimento. Tali diagrammi consentono di determinare, nei punti di flesso, le variazioni di velocità fra i vari strati attraversati dai raggi sismici e, tramite elaborazioni, le profondità a cui si verificano tali variazioni. In Tabella I sono riportate le relazioni tra le velocità medie delle onde sismiche di compressione P e di taglio SH (espresse in m/sec) e le principali litologie, desunte da letteratura.

Il procedimento di elaborazione dei tempi d'arrivo per ottenere le profondità dei rifrattori, utilizza più metodi: il Metodo del tempo di ritardo (*delay time*), il Metodo del tempo di intercetta ed il Metodo reciproco generalizzato (G.R.M.) proposto da Palmer (1980).

Il G.R.M. è un metodo interpretativo che si basa su tempi d'arrivo da energizzazioni coniugate, effettuate cioè da parti opposte del profilo sismico: tramite la determinazione di due funzioni (analisi della velocità e tempo-profondità) si determinano le velocità e quindi le profondità dei rifrattori individuati sulle dromocrone.

La funzione di analisi della velocità corrisponde al tempo necessario al raggio sismico a percorrere un tratto di lunghezza nota sul rifrattore (distanza intergeofonica), per cui la sua determinazione permette di ottenere una precisa stima della velocità delle onde sismiche nel rifrattore stesso. Tramite un procedimento di migrazione dei dati, sia la funzione tempo-profondità che quella di analisi della velocità vengono calcolate per distanze intergeofoniche crescenti (da 0 a multipli interi dell'equidistanza dei geofoni): viene scelta poi quella distanza per la quale le curve presentano il miglior andamento rettilineo.

I limiti del metodo a rifrazione risiedono nella impossibilità teorica di rilevare successioni stratigrafiche composte da strati a velocità decrescente con la profondità, in tal caso lo strato o gli strati non possono essere messi in evidenza dalle onde rifratte in quanto l'energia incidente, al contatto fra la sommità dello strato e la base dello strato sovrastante a più alta velocità, subisce una flessione verso il basso e non può venire di conseguenza rifratta; tale situazione è nota come "orizzonte nascosto". Altra limitazione consiste nella presenza di uno strato a velocità intermedia ma di ridotto spessore; anche in questo caso l'orizzonte non produce alcun cambiamento di pendenza sulle dromocrone, e non è quindi sismicamente rilevabile. Ambedue le situazioni stratigrafiche portano a sovraestimare o sottostimare lo spessore delle coperture. Quando da altri rilievi si è a conoscenza della possibile presenza di orizzonti sismici nascosti è possibile, in fase di elaborazione dei dati con il metodo G.R.M., la verifica dello spessore di tali zone, poiché negli strati nascosti si ha sempre un aumento di velocità con la profondità, ma il loro spessore è sottile e/o il contrasto di velocità con lo strato sottostante è così piccolo, per cui i raggi sismici che partono da questi strati vengono oscurati dai raggi che partono dallo strato sottostante. Gli strati a bassa velocità presentano invece una velocità sismica minore rispetto allo strato sovrastante (inversione di velocità), per cui alla loro interfaccia non si verifica una rifrazione critica e così non vengono

evidenziati sul grafico tempo-distanza. L'individuazione di eventuali strati nascosti e/o inversioni di velocità viene effettuata attraverso il confronto fra i valori delle funzioni tempo-velocità misurate e quelle ricalcolate in base al valore di XY utilizzata per l'elaborazione (Palmer 1980).

Materiale	V P m/sec	VSH	m/sec	
		VP/VSH 1.9 - 3.5	VP/VSH 1.9 - 3.5	
Detrito superficiale alterato	300 - 600	86 - 158	171 – 316	
Ghiaia, pietrisco, sabbia asciutta	500 - 900	143 - 263	257 – 474	
Sabbia bagnata	600 - 1800	171 - 316	514 – 947	
Argilla	900 - 2700	257 - 474	771 – 1421	
Acqua	1430 - 1680	-	-	
Arenaria	1800 - 4000	514 - 947	1143 – 2105	
Scisti argillosi	2500 - 4200	714 - 1316	1200 – 2211	
Calcare	2000 - 6000	571 - 1053	1714 – 3158	
Sale	4200 - 5200	1200 - 2211	1486 – 2737	
Granito	4000 - 6000	1143 - 2105	1714 - 3158	
Rocce metamorfiche	3000 - 7000	857 - 1579	2000 - 3684	

Tabella I - Velocità dei principali materiali.

3 Presentazione dei dati

Nella presente relazione vengono forniti i seguenti elaborati:

- •planimetria con ubicazioni delle indagini
- •sezioni sismiche interpretate, rappresentazioni bidimensionali delle velocità sismiche e degli spessori degli strati individuati lungo il profilo
- •tabulati numerici delle velocità delle onde sismiche e degli spessori relativi ad ogni strato rilevato per ciascuna sezione sismica
- •registrazioni di campagna e dromocrone relative.

4 Risultati dell'indagine

L'indagine ha messo in evidenza la presenza di tre orizzonti sismici con le seguenti classi di velocità:

V1 = 79 - 178 m/sec.

V2 = 250 - 260 m/sec.

V3 = 466 - 648 m/sec.

Il primo orizzonte, con uno spessore compreso tra 0.9 m e 7.3 m, è riferibile, sulla base delle stratigrafie fornite dalla D.L., al terreno naturale areato ed a limi ed argille. Il secondo orizzonte sismico ha spessori da 6.0 a 12.0 m e raggiunge profondità comprese fra 6.8 m e 16.0 m, può essere riferito ad argille limose e a marne alterate. Il terzo orizzonte è riferibile al passaggio a marne non alterate.

5 Normativa sismica e calcolo del parametro V_s30

L'Ordinanza P.C.M. $n^{\circ}3274/03$ istituisce diverse categorie di profilo stratigrafico del suolo di fondazione ai fini della definizione dell'azione sismica di progetto. Tali categorie vengono definite in base al calcolo del parametro $V_{s}30$ che è dato da:

$$V_s 30 = 30 / \Sigma_{i=1,N} (h_i / V_i)$$

dove h_i e V_i indicano lo spessore (in metri) e la velocità delle onde di taglio SH (in m/sec.) dello strato *i*-esimo, per un totale di N strati presenti nel 30 m superiori.

l valori di V_s 30 calcolati lungo il profilo **Ps1** variano fra 290 m/sec. e 402 m/sec. con un valore medio di <u>348 m/sec.</u> che rientra nella <u>categoria C</u> dei suoli di fondazione.

I valori di V_s30 calcolati lungo il profilo **Ps2** variano fra 341 m/sec. e 410 m/sec. con un valore medio di 364 m/sec. che rientra nella categoria B dei suoli di fondazione.

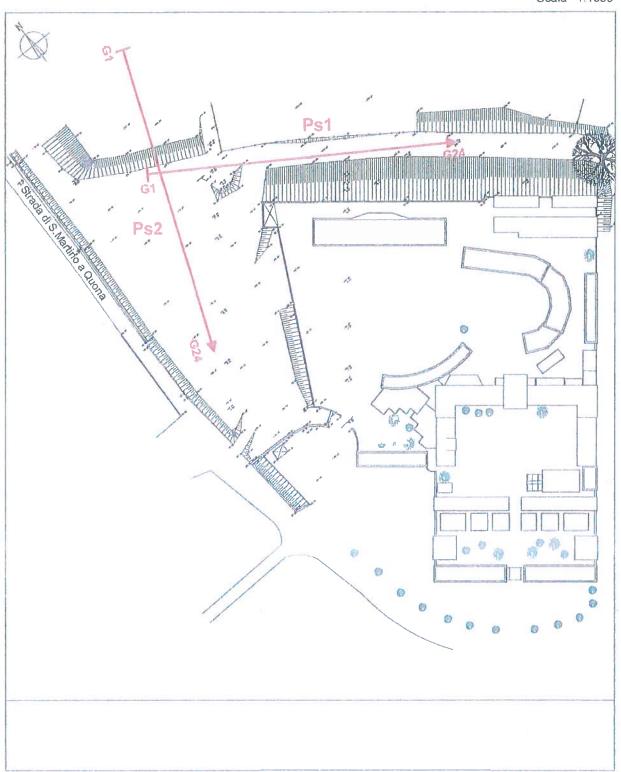
Categorie di Suolo di Fondazione	V _s 30 m/sec.	N _{spt} - C _u
A Formazioni litoidi o suoli omogenei molto rigidi caratterizzati da valori di Vs30 superiori a 800 m/sec, comprendenti eventuali strati di alterazione superficiale di spessore massimo pari a 5m.	V _s 30 > 800	
B Depositi di sabbie e ghiaie molto addensate o argille molto consistenti, con spessori di diverse decine di metri, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di Vs30 compresi tra 360 m/sec e 800 m/sec (ovvero resistenza penetrometrica Nspt> 50, o coesione non drenata cu > 250 kPa)	360< V₅30 <800	N _{spt} > 50 C _u > 250 kPa
C Depositi di sabbie e ghiaie mediamente addensate, o di argille di media consistenza, con spessori variabili da diverse decine fino a centinaia di metri, caratterizzati da valori di Vs30 compresi tra 180 m/sec e 360 m/sec (15 < Nspt < 50, 70 <cu <250="" kpa)<="" td=""><td>180< V_s30 <360</td><td>15 < N_{spt} < 50 70 < C_u< 250 kPa</td></cu>	180< V _s 30 <360	15 < N _{spt} < 50 70 < C _u < 250 kPa
D Depositi di terreni granulari da sciolti a poco addensati oppure coesivi da poco a mediamente consistenti, caratterizzati da valori di Vs30< 180 m/sec (Nspt < 15, cu <70 kPa)	V _s 30 < 180	N _{spt} <15 C _u <70 kPa
E Profili di terreno costituiti da strati superficiali alluvionali, con	V _s 30 < 360	

Rapporto di prova n°30/08/S	Rapporto	di prova	n°30/08/S
-----------------------------	----------	----------	-----------

valori di Vs30 simili a quelli dei tipi C o D e spessore compreso tra 5 e 20 m, giacenti su di un substrato di materiale più rigido con Vs30>800 m/sec.		
Depositi costituiti da, o che includono, uno strato spesso almeno 10 m di argille/limi di bassa consistenza, con elevato indice di plasticità (lp > 40) e contenuto d'acqua, caratterizzati da valori di Vs30 <100 m/sec.	V _s 30 < 100	10 < C _u < 20 kPa
S2 Depositi di terreni soggetti a liquefazione, di argille sensitive, o qualsiasi altra categoria di terreno non classificabile nei tipi precedenti.		

Tabella III - Categorie di suolo di fondazione

6 Caratteristiche della strumentazione


Il sistema di acquisizione usato nella presente campagna d'indagini è composto da un sistema modulare della Geometrics così configurato:

Sismografo GEODE 48 canali (2 moduli a 24 canali) con Controller Stratavisor NZC:

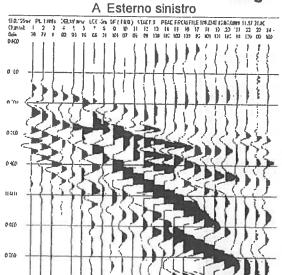
- •risoluzione segnale A/D 24 bit;
- •escursione dinamica 144 dB, 110 dB istantanea a 2 ms;
- •passo di campionamento da 0.02 a 16 ms indipendente dal tempo d'acquisizione;
- •fino a 64000 campioni per traccia;
- •distorsione 0.0005% a 2ms, 1.75 208 Hz;
- •amplificazione del segnale da 0 a 36 dB;
- •filtri anti-aliasing a 90 dB della frequenza di Nyquist;
- •filtri digitali low-cut, high-cut, notch;
- •precisione trigger in sommatoria 1/32 del passo di campionamento;
- •pre-trigger fino a 4096 campioni, delay sino a 1.000 ms;
- •salvataggio dati in formato SEG-2 su hard-disk incorporato:
- 24 geofoni orizzontali con frequenza propria di 4.5 Hz;
- sistema di starter (trigger) mediante accelerometro;
- •energizzazione mediante mazza da 5 Kg, minibang calibro 8, grave da 30/60 kg.

Ubicazione profili di sismica a rifrazione

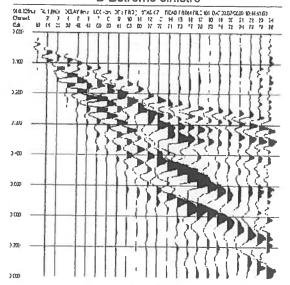
Scala 1:1000

Rapporto di prova n°30/08/S

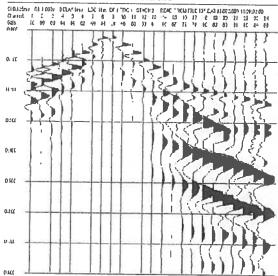
Geo.	ShotA	ShotB	ShotC	ShotD	ShotE	ShotF
N°	ms	ms	ms	ms	ms	ms
1	111.20	14.20	116.70	223.60	257.00	295.60
2	118.60	41.70	106.30	220.00	249.10	293.10
3	126.50	57.00	100.20	209.60	242.20	292.20
4	138.10	66.70	85.60	202.20	238.80	290.60
5	146.70	77.70	74.10	193.70	231.10	286.30
6	155.20	91.70	61.20	177.20	229.60	281.30
7	166.20	100.80	33.10	173.00	226.20	278.80
8	176.60	115.60	16.10	172.30	225.20	278.80
9	188.80	130.80	14.20	168.10	223.20	275.50
10	202.80	153.30	33.10	154.60	217.80	270.30
11	216.20	168.60	60.00	139.30	207.10	258.60
12	231.00	187.60	86.20	125.30	198.80	249.30
13	242.50	199.70	104.60	110.70	186.10	233.30
14	248.00	210.20	123.50	85.00	169.00	219.00
15	254.70	213.20	144.80	58.70	152.00	204.60
16	259.60	218.70	160.10	37.50	138.20	195.30
17	262.10	225.50	174.70	12.30	126.10	187.80
18	265.70	232.10	182.70	13.00	113.80	176.80
19	271.20	235.20	188.80	33.70	97.20	166.70
20	278.50	238.20	194.80	61.20	82.10	160.80
21	282.80	243.10	202.80	79.50	62.60	153.20
22	283.50	248.00	207.10	91.10	45.00	145.70
23	286.50	254.70	214.50	100.80	33.70	136.30
24	288.80	259.60	220.00	111.80	10.30	133.10

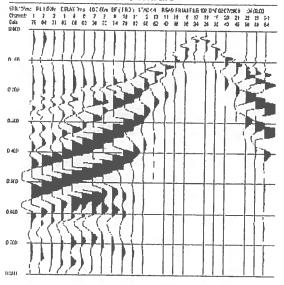

	27	200.00	200.00	220.00	111.00	10.00	100,10				i	
Geo.	Dist.	Q	V1	Z1	Q1	V2	Z2	H2	Q2	V3		W. Co.
N°	m	m slm	m/sec.	m	m slm	m/sec.	m	m	m slm	m/sec.	Vs30	Classe
1	0	101.0	143	2.2	98.8	260	7.1	9.3	91.7	648	402	В
2	4	101.0	143	2.1	98.9	260	7.9	10.0	91.0	648	395	В
3	8	100.8	145	2.0	98.8	260	8.4	10.4	90.4	648	393	В
4	12	100.5	146	1.7	98.8	260	10.4	12.1	88.4	648	378	В
5	16	100.2	148	2.0	98.2	260	10.5	12.5	87.7	648	371	В
6	20	99.9	150	2.3	97.5	260	10.5	12.8	87.0	648	365	В
7	24	99.3	151	2.2	97.1	260	11.9	14.1	85.1	648	353	С
8	28	98.7	153	2.5	96.2	260	11.9	14.4	84.3	648	348	С
9	32	99.0	155	3.2	95.8	260	12.0	15.2	83.7	648	335	С
10	36	99.2	156	4.2	95.0	260	11.8	16.0	83.2	487	297	С
11	40	99.5	158	5.4	94.1	260	10.1	15.5	84.0	487	292	С
12	44	99.7	160	5.7	94.0	260	9.9	15.6	84.1	487	290	С
13	48	100.0	161	6.3	93.7	260	7.5	13.8	86.2	604	316	С
14	52	100.5	163	6.8	93.7	260	6.9	13.7	86.8	604	315	С
15 .	56	100.7	165	7.3	93.4	260	6.0	13.3	87.4	604	316	С
16	60	101.0	166	6.3	94.7	260	7.1	13.4	87.6	604	323	С
17	64	101.2	168	5.3	95.9	260	8.2	13.5	87.7	604	332	С
18	68	101.5	170	4.4	97.1	260	8.7	13.1	88.4	604	344	С
19	72	101.7	171	4.0	97.7	260	8.7	12.7	89.0	604	351	С
20	76	101.8	173	3.4	98.4	260	10.0	13.4	88.4	604	350	С
21	80	102.0	175	2.6	99.4	260	10.8	13.4	88.6	604	358	С
. 22	84	102.1	176	1.8	100.3	260	11.1	12.9	89.2	604	369	В
23	88	102.3	178	1.2	101.1	260	11.1	12.3	90.0	604	381	В
24	92	102.4	178	0.9	101.5	260	11.5	12.4	90.0	604	383	В
	1000								Vs	30 media:	348	С

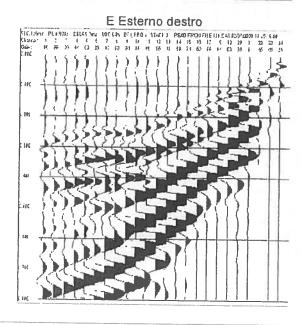
0100


Cimitero di Pontassieve (FI)

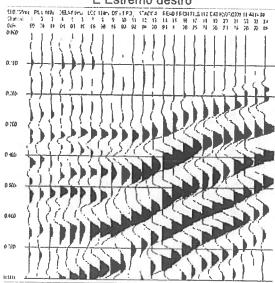
Registrazioni Ps1 - onde SH


A Catarna simiat


B Estremo sinistro



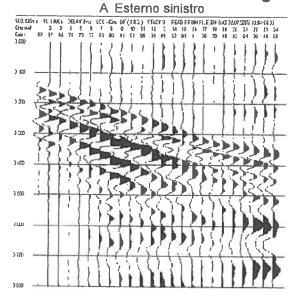
C Centrale

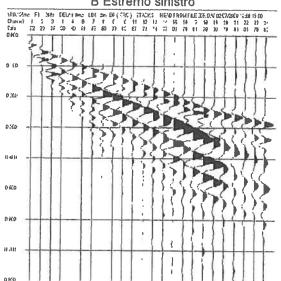


D Centrale

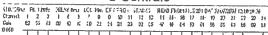
E Estremo destro

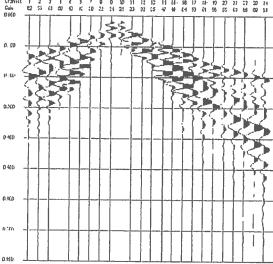
Rapporto di prova n°30/08/S

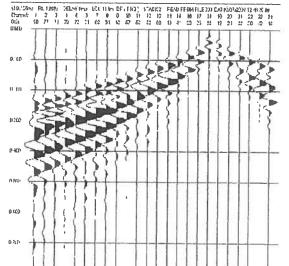

N° ms ms ms ms ms ms	Car	06-14	01. 15	01 12			
1 120.30 16.50 105.30 205.50 251.10 280.50 2 129.10 32.10 96.60 201.70 247.30 273.60 3 136.00 42.70 89.00 194.80 240.50 268.60 4 149.10 54.60 77.10 186.60 236.70 263.60 5 160.30 69.00 62.10 175.30 228.60 256.10 6 170.30 80.80 55.20 164.10 216.70 247.30 7 177.20 92.10 45.20 154.10 208.60 236.60 8 185.30 103.50 39.00 144.70 201.10 230.50 9 196.70 111.00 15.80 137.20 190.50 224.80 10 203.00 121.00 17.10 127.80 184.10 214.80 11 211.70 129.10 36.50 117.20 172.80 286.60 12 224.80	Geo.	ShotA	ShotB	ShotC	ShotD	ShotE	ShotF
2 129.10 32.10 96.60 201.70 247.30 273.60 3 136.00 42.70 89.00 194.80 240.50 268.60 4 149.10 54.60 77.10 186.60 236.70 263.60 5 160.30 69.00 62.10 175.30 228.60 256.10 6 170.30 80.80 55.20 164.10 216.70 247.30 7 177.20 92.10 45.20 154.10 208.00 238.60 8 185.30 103.50 39.00 144.70 201.10 230.50 9 196.70 111.00 15.80 137.20 190.50 224.80 10 203.00 121.00 17.10 127.80 184.10 214.80 11 211.70 129.10 36.50 117.20 172.80 208.60 12 224.80 137.80 52.70 106.60 167.20 200.50 13 233.00			ms		ms	ms	ms
3 136.00 42.70 89.00 194.80 240.50 268.60 4 149.10 54.60 77.10 186.60 236.70 263.60 5 160.30 69.00 62.10 175.30 228.60 256.10 6 170.30 80.80 55.20 164.10 216.70 247.30 7 177.20 92.10 45.20 154.10 208.00 238.60 8 185.30 103.50 39.00 144.70 201.10 230.50 9 196.70 111.00 15.80 137.20 190.50 224.80 10 203.00 121.00 17.10 127.80 184.10 214.80 11 211.70 129.10 36.50 117.20 172.80 208.60 12 224.80 137.80 52.70 106.60 167.20 200.50 13 233.00 150.50 65.20 93.30 156.00 187.80 14 244.20		120.30		105.30	205.50	251.10	280.50
3 136.00 42.70 89.00 194.80 240.50 268.60 4 149.10 54.60 77.10 186.60 236.70 263.60 5 160.30 69.00 62.10 175.30 228.60 256.10 6 170.30 80.80 55.20 164.10 216.70 247.30 7 177.20 92.10 45.20 154.10 208.00 238.60 8 185.30 103.50 39.00 144.70 201.10 230.50 9 196.70 111.00 15.80 137.20 190.50 224.80 10 203.00 121.00 17.10 127.80 184.10 214.80 11 211.70 129.10 36.50 117.20 172.80 208.60 12 224.80 137.80 52.70 106.60 167.20 200.50 13 233.00 150.50 65.20 93.30 156.00 187.80 14 244.20		129.10	32.10	96.60	201.70	247.30	273.60
4 149.10 54.60 77.10 186.60 236.70 263.60 5 160.30 69.00 62.10 175.30 228.60 256.10 6 170.30 80.80 55.20 164.10 216.70 247.30 7 177.20 92.10 45.20 154.10 208.00 238.60 8 185.30 103.50 39.00 144.70 201.10 230.50 9 196.70 111.00 15.80 137.20 190.50 224.80 10 203.00 121.00 17.10 127.80 184.10 214.80 11 211.70 129.10 36.50 117.20 172.80 208.60 12 224.80 137.80 52.70 106.60 167.20 200.50 13 233.00 150.50 65.20 93.30 156.00 187.80 14 244.20 160.80 75.80 80.80 146.60 182.20 15 254.80		136.00	42.70	89.00	194.80	240.50	
6 170.30 80.80 55.20 164.10 216.70 247.30 7 177.20 92.10 45.20 154.10 208.00 238.60 8 185.30 103.50 39.00 144.70 201.10 230.50 9 196.70 111.00 15.80 137.20 190.50 224.80 10 203.00 121.00 17.10 127.80 184.10 214.80 11 211.70 129.10 36.50 117.20 172.80 208.60 12 224.80 137.80 52.70 106.60 167.20 200.50 13 233.00 150.50 65.20 93.30 156.00 187.80 14 244.20 160.80 75.80 80.80 146.60 182.20 15 254.80 172.80 89.00 72.10 137.20 174.10 16 264.20 184.70 99.70 56.50 124.70 164.70 17 273.60		149.10	54.60	77.10	186,60	236.70	
6 170.30 80.80 55.20 164.10 216.70 247.30 7 177.20 92.10 45.20 154.10 208.00 238.60 8 185.30 103.50 39.00 144.70 201.10 230.50 9 196.70 111.00 15.80 137.20 190.50 224.80 10 203.00 121.00 17.10 127.80 184.10 214.80 11 211.70 129.10 36.50 117.20 172.80 208.60 12 224.80 137.80 52.70 106.60 167.20 200.50 13 233.00 150.50 65.20 93.30 156.00 187.80 14 244.20 160.80 75.80 80.80 146.60 182.20 15 254.80 172.80 89.00 72.10 137.20 174.10 16 264.20 184.70 99.70 56.50 124.70 164.70 17 273.60	5	160.30	69.00	62.10	175.30	228.60	256.10
8 185.30 103.50 39.00 144.70 201.10 230.50 9 196.70 111.00 15.80 137.20 190.50 224.80 10 203.00 121.00 17.10 127.80 184.10 214.80 11 211.70 129.10 36.50 117.20 172.80 208.60 12 224.80 137.80 52.70 106.60 167.20 200.50 13 233.00 150.50 65.20 93.30 156.00 187.80 14 244.20 160.80 75.80 80.80 146.60 182.20 15 254.80 172.80 89.00 72.10 137.20 174.10 16 264.20 184.70 99.70 56.50 124.70 164.70 17 273.60 197.30 112.20 39.60 112.20 154.70 18 285.00 208.00 127.80 19.60 104.70 148.50 19 291.20<			80.80	55.20	164.10	216.70	
8 185.30 103.50 39.00 144.70 201.10 230.50 9 196.70 111.00 15.80 137.20 190.50 224.80 10 203.00 121.00 17.10 127.80 184.10 214.80 11 211.70 129.10 36.50 117.20 172.80 208.60 12 224.80 137.80 52.70 106.60 167.20 200.50 13 233.00 150.50 65.20 93.30 156.00 187.80 14 244.20 160.80 75.80 80.80 146.60 182.20 15 254.80 172.80 89.00 72.10 137.20 174.10 16 264.20 184.70 99.70 56.50 124.70 164.70 17 273.60 197.30 112.20 39.60 112.20 154.70 18 285.00 208.00 127.80 19.60 104.70 148.50 19 291.20<	7	177.20	92.10	45.20	154.10	208.00	238.60
10 203.00 121.00 17.10 127.80 184.10 214.80 11 211.70 129.10 36.50 117.20 172.80 208.60 12 224.80 137.80 52.70 106.60 167.20 200.50 13 233.00 150.50 65.20 93.30 156.00 187.80 14 244.20 160.80 75.80 80.80 146.60 182.20 15 254.80 172.80 89.00 72.10 137.20 174.10 16 264.20 184.70 99.70 56.50 124.70 164.70 17 273.60 197.30 112.20 39.60 112.20 154.70 18 285.00 208.00 127.80 19.60 104.70 148.50 19 291.20 218.60 141.60 25.20 94.70 140.30 20 298.70 226.70 148.50 45.20 78.30 136.00 21 302.50<	8	185.30	103.50	39.00	144.70	201.10	
10 203.00 121.00 17.10 127.80 184.10 214.80 11 211.70 129.10 36.50 117.20 172.80 208.60 12 224.80 137.80 52.70 106.60 167.20 200.50 13 233.00 150.50 65.20 93.30 156.00 187.80 14 244.20 160.80 75.80 80.80 146.60 182.20 15 254.80 172.80 89.00 72.10 137.20 174.10 16 264.20 184.70 99.70 56.50 124.70 164.70 17 273.60 197.30 112.20 39.60 112.20 154.70 18 285.00 208.00 127.80 19.60 104.70 148.50 19 291.20 218.60 141.60 25.20 94.70 140.30 20 298.70 226.70 148.50 45.20 78.30 136.00 21 302.50<			111.00	15.80	137.20	190.50	224.80
11 211.70 129.10 36.50 117.20 172.80 208.60 12 224.80 137.80 52.70 106.60 167.20 200.50 13 233.00 150.50 65.20 93.30 156.00 187.80 14 244.20 160.80 75.80 80.80 146.60 182.20 15 254.80 172.80 89.00 72.10 137.20 174.10 16 264.20 184.70 99.70 56.50 124.70 164.70 17 273.60 197.30 112.20 39.60 112.20 154.70 18 285.00 208.00 127.80 19.60 104.70 148.50 19 291.20 218.60 141.60 25.20 94.70 140.30 20 298.70 226.70 148.50 45.20 78.30 136.00 21 302.50 234.80 153.50 55.80 66.50 124.70 22 305.60 </td <td></td> <td>203.00</td> <td>121.00</td> <td>17.10</td> <td>127.80</td> <td>184.10</td> <td></td>		203.00	121.00	17.10	127.80	184.10	
13 233.00 150.50 65.20 93.30 156.00 187.80 14 244.20 160.80 75.80 80.80 146.60 182.20 15 254.80 172.80 89.00 72.10 137.20 174.10 16 264.20 184.70 99.70 56.50 124.70 164.70 17 273.60 197.30 112.20 39.60 112.20 154.70 18 285.00 208.00 127.80 19.60 104.70 148.50 19 291.20 218.60 141.60 25.20 94.70 140.30 20 298.70 226.70 148.50 45.20 78.30 136.00 21 302.50 234.80 153.50 55.80 66.50 124.70 22 305.60 239.20 160.30 72.10 52.70 111.60 23 310.60 246.10 168.50 83.30 39.00 102.80		211.70	129.10	36.50	117.20	172.80	
14 244.20 160.80 75.80 80.80 146.60 182.20 15 254.80 172.80 89.00 72.10 137.20 174.10 16 264.20 184.70 99.70 56.50 124.70 164.70 17 273.60 197.30 112.20 39.60 112.20 154.70 18 285.00 208.00 127.80 19.60 104.70 148.50 19 291.20 218.60 141.60 25.20 94.70 140.30 20 298.70 226.70 148.50 45.20 78.30 136.00 21 302.50 234.80 153.50 55.80 66.50 124.70 22 305.60 239.20 160.30 72.10 52.70 111.60 23 310.60 246.10 168.50 83.30 39.00 102.80			137.80	52.70	106.60	167.20	200.50
15 254.80 172.80 89.00 72.10 137.20 174.10 16 264.20 184.70 99.70 56.50 124.70 164.70 17 273.60 197.30 112.20 39.60 112.20 154.70 18 285.00 208.00 127.80 19.60 104.70 148.50 19 291.20 218.60 141.60 25.20 94.70 140.30 20 298.70 226.70 148.50 45.20 78.30 136.00 21 302.50 234.80 153.50 55.80 66.50 124.70 22 305.60 239.20 160.30 72.10 52.70 111.60 23 310.60 246.10 168.50 83.30 39.00 102.80	13	233.00	150.50	65.20	93.30	156.00	187.80
15 254.80 172.80 89.00 72.10 137.20 174.10 16 264.20 184.70 99.70 56.50 124.70 164.70 17 273.60 197.30 112.20 39.60 112.20 154.70 18 285.00 208.00 127.80 19.60 104.70 148.50 19 291.20 218.60 141.60 25.20 94.70 140.30 20 298.70 226.70 148.50 45.20 78.30 136.00 21 302.50 234.80 153.50 55.80 66.50 124.70 22 305.60 239.20 160.30 72.10 52.70 111.60 23 310.60 246.10 168.50 83.30 39.00 102.80		244.20	160.80	75.80	80.80	146.60	182.20
16 264.20 184.70 99.70 56.50 124.70 164.70 17 273.60 197.30 112.20 39.60 112.20 154.70 18 285.00 208.00 127.80 19.60 104.70 148.50 19 291.20 218.60 141.60 25.20 94.70 140.30 20 298.70 226.70 148.50 45.20 78.30 136.00 21 302.50 234.80 153.50 55.80 66.50 124.70 22 305.60 239.20 160.30 72.10 52.70 111.60 23 310.60 246.10 168.50 83.30 39.00 102.80	15	254.80	172.80	89.00	72.10	137.20	
18 285.00 208.00 127.80 19.60 104.70 148.50 19 291.20 218.60 141.60 25.20 94.70 140.30 20 298.70 226.70 148.50 45.20 78.30 136.00 21 302.50 234.80 153.50 55.80 66.50 124.70 22 305.60 239.20 160.30 72.10 52.70 111.60 23 310.60 246.10 168.50 83.30 39.00 102.80		264.20	184.70	99.70	56.50	124.70	
18 285.00 208.00 127.80 19.60 104.70 148.50 19 291.20 218.60 141.60 25.20 94.70 140.30 20 298.70 226.70 148.50 45.20 78.30 136.00 21 302.50 234.80 153.50 55.80 66.50 124.70 22 305.60 239.20 160.30 72.10 52.70 111.60 23 310.60 246.10 168.50 83.30 39.00 102.80		273.60	197.30	112.20	39.60	112.20	154.70
20 298.70 226.70 148.50 45.20 78.30 136.00 21 302.50 234.80 153.50 55.80 66.50 124.70 22 305.60 239.20 160.30 72.10 52.70 111.60 23 310.60 246.10 168.50 83.30 39.00 102.80		285.00	208.00	127.80	19.60	104.70	
20 298.70 226.70 148.50 45.20 78.30 136.00 21 302.50 234.80 153.50 55.80 66.50 124.70 22 305.60 239.20 160.30 72.10 52.70 111.60 23 310.60 246.10 168.50 83.30 39.00 102.80	19	291.20	218.60	141.60	25.20	94.70	140.30
21 302.50 234.80 153.50 55.80 66.50 124.70 22 305.60 239.20 160.30 72.10 52.70 111.60 23 310.60 246.10 168.50 83.30 39.00 102.80	20	298.70	226.70	148.50	45.20	78.30	
22 305.60 239.20 160.30 72.10 52.70 111.60 23 310.60 246.10 168.50 83.30 39.00 102.80		302.50	234.80	153.50	55.80		
23 310.60 246.10 168.50 83.30 39.00 102.80		305.60	239.20	160.30	72.10		
04 040 70 040 00		310.60	246.10	168.50		39.00	
	24	313.70	249.80	176.60	90.80		


_	A. Contraction of the Contractio				00.00	17.10	00.00					
Geo.	Dist.	Q	V1	Z1	Q1	V2	Z2	H2	Q2	V3	1	
N°	m	m slm	m/sec.	m	m slm	m/sec.	m	m	m slm	m/sec.	Vs30	Classe
1	0	107.6	121	0.5	107.1	250	6.6	7.1	100.5	480	383	В
2	4	107.2	122	0.5	106.7	250	6.8	7.4	99.8	480	382	В
3	8	106.8	122	0.6	106.2	250	7.1	7.6	99.2	480	376	В
4	12	106.4	123	0.6	105.8	250	8.2	8.8	97.6	480	367	В
5	16	106.0	124	0.6	105.4	250	8.7	9.3	96.7	480	362	В
6	20	105.6	124	0.6	105.0	250	8.9	9,5	96.1	480	361	В
7	24	105.2	125	0.7	104.5	250	8.6	9.3	95.9	480	361	В
8	28	104.6	125	0.9	103.7	250	8.6	9.5	95.1	480	356	c
9	32	103.3	126	0.7	102.6	250	9.0	9.8	93.5	480	358	c
10	36	101.8	123	0.7	101.1	250	8.8	9.4	92.4	480	359	C
11	40	101.0	121	0.7	100.3	250	9.1	9.8	91.2	480	356	c
12	44	100.2	118	0.7	99.6	250	9.9	10.6	89.6	466	344	c
13	48	99.4	115	0.6	98.7	250	9.2	9.9	89.5	466	351	c
14	52	98.8	113	0.6	98.2	250	10.1	10.7	88.1	466	344	c
15	56	98.3	110	0.6	97.7	250	10.4	11.0	87.3	466	342	C
16	60	97.7	107	0.6	97.1	250	10.4	11.0	86.7	466	341	c
17	64	97.2	105	0.6	96.5	250	10.3	10.9	86.3	466	341	c
18	68	96.6	102	0.6	96.0	250	10.4	11.0	85.6	549	365	В
19	72	96.1	79	0.6	95.4	250	9.5	10.2	85.9	549	367	В
20	76	95.5	86	0.7	94.8	250	10.1	10.7	84.8	549	359	c
21	80	95.2	94	0.7	94.5	250	9.1	9.8	85.4	549	372	В
22	84	94.8	101	0.7	94.1	250	7.8	8.5	86.3	549	388	-
23	88	94.4	109	0.8	93.6	250	7.3	8.1	86.3	549	393	В
24	92	94.0	116	0.8	93.2	250	6.0	6.8	87.2	549	410	В
	3/5-							0.0	-		- 111	В
									VS3	0 media:	364	В

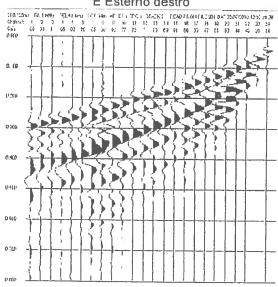
Cimitero di Pontassieve (FI)

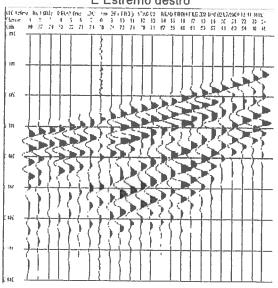

Registrazioni Ps2 - onde SH





C Centrale




D Centrale

E Esterno destro

E Estremo destro

Allegato B3

Certificazione relativa alla prosecuzione del monitoraggio inclinometrico fino al marzo 2010 per i tubi inclinometrici I1/S1, I3/S3

Rapporto di prova 228/10/IN

SETTORE: prove in situ

COMMITTENTE:

Confraternita della Misericordia

DIREZIONE LAVORI:

Geol. E. Focardi

LAVORI:

Letture inclinometriche

LOCALITA':

Cimitero di San Martino a Quona - Pontassieve

RIFERIMENTO:

R.P.E n.275/10

Prove eseguite

Letture	inclinom	etriche:
Lottuic	IIIOIIIIOIII	CUIUIIC.

lettura di zero	27/04/01
lettura n. 1	05/07/01
lettura n. 2	20/11/01
lettura n. 3	05/04/02
lettura n. 4	31/03/05
lettura n. 5	23/11/07
lettura n. 6	08/07/09
lettura n. 7	25/03/10

Lo sperimentatore Geol. L. Gambassi Il direttore del Laboratorio Ing. F. Politi

i.1 - profondità 13.5 m i.3 - profondità 14.0 m

NOTE:

- Il presente rapporto di prova riguarda esclusivamente i campioni sottoposti ad analisi
- Il presente rapporto di prova non può essere riprodotto parzialmente, salvo approvazione scritta del Laboratorio.
- Il presente rapporto di prova è stato redatto conformemente alla norma UNI CEI EN 70011,

Rapporto di prova n.

228/10

Committente:

Confraternita della Misericordia

Località:

Cimitero di San Martino a Quona - Pontassieve

Tubo:

i.1

Data origine:

27/04/01

Quota testa tubo:

0.0

Correzione azimutale:

214°

Tipo Sonda:

Segea MK4

Calcolo dal basso dello spostamento differenziale (per punti)

	Misura d						
Prof. (m)	05/07/01	20/11/01	05/04/02	31/03/05	23/11/07	08/07/09	25/03/10
0.0	1.55	2.50	0.67	1.98	1.64	0.60	7.63
-0.5	1.15	R.P.E n.:	0.28	1.59	0.71	2.81	1.20
-1.0	0.79	1.51	0.35	1.13	1.26	1.16	0.33
-1.5	0.45	1.17	0.44	0.86	2.52	0.96	1.26
-2.0	0.40	1.00	0.22	0.63	2.70	1.48	3.27
-2.5	0.20	0.36	0.18	1.64	1.40	3.21	4.79
-3.0	0.15	0.35	0.17	1.28	0.33	2.60	3.74
-3.5	0.17	0.30	0.16	0.52	0.38	1.21	1.43
-4.0	0.09	0.11	0.06	0.18	0.52	0.56	0.73
-4.5	0.06	0.04	0.11	0.18	0.78	0.37	0.44
-5.0	0.05	0.16	0.18	0.13	0.58	0.20	0.43
-5.5	0.05		0.15	0.13	0.44	0.11	0.13
-6.0	0.04		0.09	0.08	0.45	0.08	0.10
-6.5			0.10	0.00	0.62	0.08	0.08
-7.0			0.11	0.00	0.83	0.00	0.06
-7.5			0.06	0.21	0.32	0.06	0.10
-8.0			0.16	0.08	0.41	0.15	0.16
-8.5			0.08	0.11	1.14	0.25	0.30
-9.0			0.11	0.29	2.05	0.25	0.27
-9.5				0.47	1.18	0.14	0.13
-10.0			0.11	0.28	0.18	0.09	0.03
-10.5				0.24	2.54	0.08	0.13
-11.0				0.10	2.83	0.47	0.32
				0.87	0.47	0.39	0.40
	_			0.10	0.79	0.16	0.13
				0.16	0.61	0.23	0.20
			0.05	0.03	0.04		0.20
-13.5	0.04	0.16 (0.15	0.20	0.17	0.13	0.18

Rapporto di prova n. 228/10

Committente:

Confraternita della Misericordia

Località:

Cimitero di San Martino a Quona - Pontassieve

Tubo:

i 1

Data origine:

27/04/01

Quota testa tubo:

0.0

Correzione azimutale:

214°

Tipo Sonda:

Segea MK4

Calcolo dal basso dello spostamento incrementale (risultante)

	Misura d	el					
Prof. (m)	05/07/01	20/11/01	05/04/02	31/03/05	23/11/07	08/07/09	25/03/10
0.0	5.41	9.48	2.92	1.45	6.65	11.65	20.04
-0.5	3.93	R.P.E n.:	2.35	0.79	7.81	11.10	16.21
-1.0	2.84	5.20	2.14	2.30	7.77	9.97	15.92
-1.5	2.10	3.69	1.90	3.43	6.55	9.83	15.62
-2.0	1.66	2.58	1.81	4.26	4.09	9.42	14.48
-2.5	1.27	1.63	1.60	3.91	1.50	8.10	11.32
-3.0	1.08	1.31	1.47	2.30	0.47	5.14	6.73
-3.5	0.94	1.00	1.32	1.03	0.78	2.89	3.36
-4.0	0.77	0.92	1.28	0.66	0.40	1.70	1.95
-4.5	0.68	0.92	1.22	0.60	0.14	1.16	1.42
-5.0	0.63	0.93	1.12	0.77	0.83	1.15	1.63
-5.5	0.61	0.90	1.00	0.65	1.39	0.96	1.21
-6.0	0.63	0.81	0.86	0.66	1.63	1.05	1.25
-6.5	0.59	0.83	0.77	0.59	1.86	1.00	1.15
-7.0	0.54	0.74	0.71	0.59	2.21	0.97	1.15
-7.5	0.51	0.68	0.60	0.59	2.94	0.97	1.11
-8.0	0.46	0.61	0.56	0.38	3.17	0.91	1.01
-8.5	0.40	0.49	0.40	0.32	2.76	1.05	1.10
-9.0	0.37	0.47	0.46	0.33	2.50	0.82	0.80
-9.5	0.34	0.44	0.41	0.10	3.93	0.78	0.67
-10.0	0.30	0.41	0.39	0.52	5.11	0.79	0.62
-10.5	0.29	0.29	0.29	0.78	5.29	0.88	0.63
-11.0	0.25	0.21	0.15	0.79	3.04	0.95	0.73
-11.5	0.20	0.22	0.38	0.88	1.65	0.49	0.42
-12.0	0.15	0.30	0.32	0.08	1.28	0.52	0.52
-12.5	0.09	0.28	0.30	0.06	0.50	0.38	0.41
-13.0	0.07	0.20	0.19	0.20	0.16	0.18	0.25
-13.5	0.04	0.16	0.15	0.20	0.17	0.13	0.18

Rapporto di prova n.

228/10

Committente:

Confraternita della Misericordia

Località:

Cimitero di San Martino a Quona - Pontassieve

Tubo:

i.1

Data origine:

27/04/01

Quota testa tubo:

0.0

Correzione azimutale:

214°

Tipo Sonda:

Segea MK4

Calcolo dal basso dell'Azimut

	Misura d	el					
Prof. (m)			05/04/02	31/03/05	23/11/07	N8/N7/N0	25/03/10
0.0	49.9	55.1	9.3	9.6	198.5	197.5	201.2
-0.5	55.6	R.P.E n.:	17.1	248.7	207.7	196.4	222.3
-1.0	62.1	61.5	21.9	227.3	212.9	210.5	226.4
-1.5	68.4	61.1	14.7	228.0	215.2	217.2	226.9
-2.0	71.7	54.3	1.4	231.6	221.1	222.3	229.0
-2.5	75.5	45.4	1.4	238.9	238.9	226.8	232.7
-3.0	77.8	39.3	6.2	232.3	307.6	215.8	223.6
-3.5	81.2	30.7	3.3	229.0	320.5	196.3	204.1
-4.0	80.9	13.2	356.6	253.7	318.9	191.0	208.4
-4.5	79.7	6.6	356.8	269.0	101.0	197.1	225.9
-5.0	79.5	4.4	355.4	271.8	167.2	215.6	240.4
-5.5	75.2	14.4	2.9	271.5	159.5	211.4	241.9
-6.0	79.5	11.0	3.9	260.6	173.3	207.6	236.0
-6.5	78.2	9.8	4.4	263.6	186.1	210.7	237.2
-7.0	77.8	8.3	358.0	263.6	200.7	214.7	241.0
-7.5	76.2	5.0	355.7	263.6	209.2	214.7	242.5
-8.0	78.4	1.0	352.6	267.6	205.2	215.1	243.1
-8.5	77.8	356.5	347.8	274.7	204.3	213.7	236.0
-9.0	75.7	2.3	355.4	293.5	180.0	208.7	232.4
-9.5	73.1	8.7	8.5	236.0	152.9	191.0	214.2
-10.0	65.5	13.5	11.0	290.8	153.0	180.7	204.2
-10.5	76.0	25.0	18.1	299.4	153.3	182.9	202.3
-11.0	80.0	42.0	56.0	316.8	170.2	181.4	195.2
	95.8	56.0	56.0	317.9	236.9	191.0	203.3
-12.0	87.0	326.0	326.0	37.6	248.4		252.7
-12.5	89.7	326.0	335.5	299.4	238.9		261.0
-13.0	101.0	326.0	349.2	333.1			281.0
-13.5	101.0	344.4	357.0	326.0			334.1

Committente:

Confraternita della Misericordia

Località:

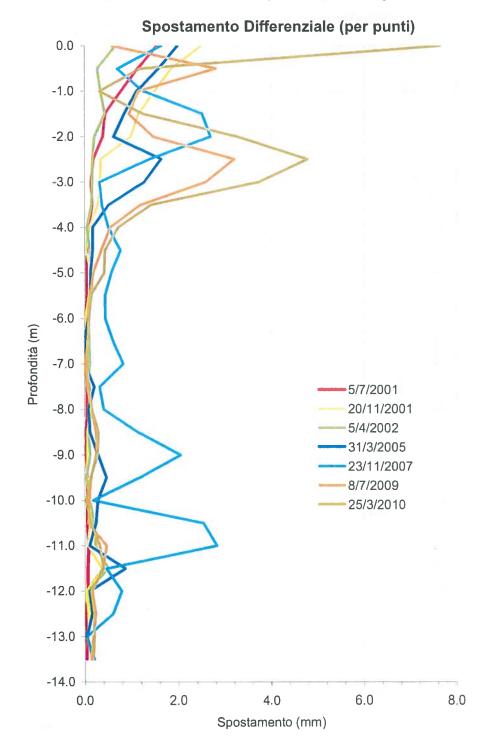
Cimitero di San Martino a Quona - Pontassieve

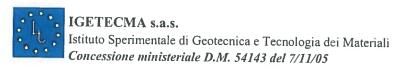
Tubo:

i.1

Data origine:

27/04/01


Quota testa tubo:


0.0

Correzione azimutale: 214°

Tipo Sonda:

Segea MK4

Committente:

Confraternita della Misericordia

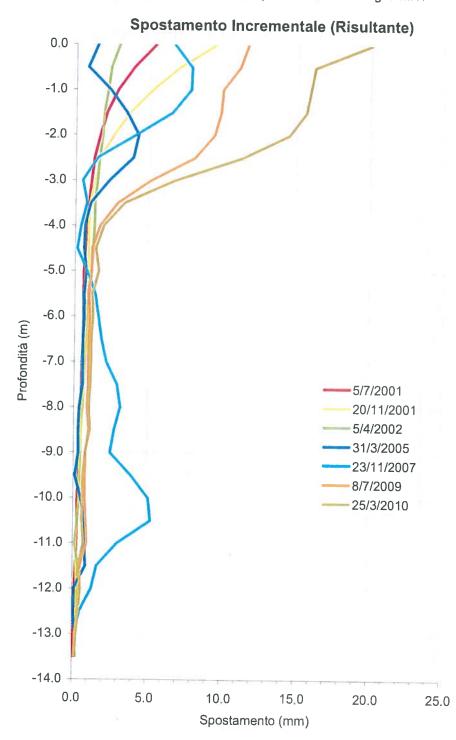
Località:

Cimitero di San Martino a Quona - Pontassieve

Tubo:

i.1

Data origine: Correzione azimutale: 27/04/01

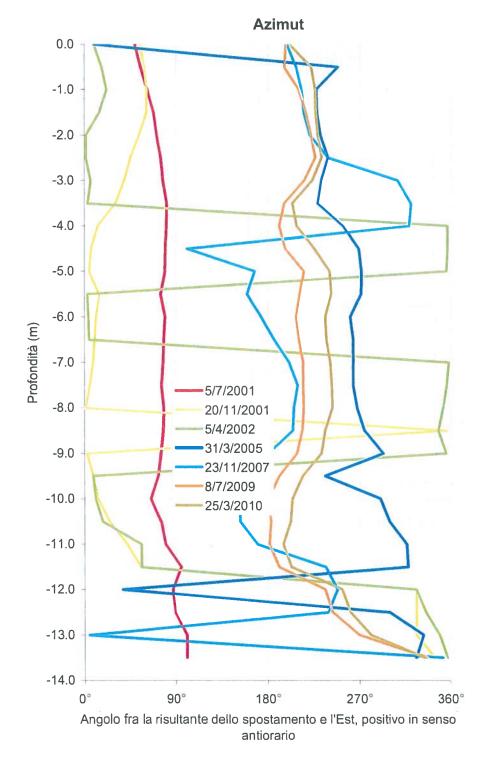

Quota testa tubo:

0.0

214°

Tipo Sonda:

Segea MK4



Committente: Confraternita della Misericordia

Località: Cimitero di San Martino a Quona - Pontassieve

Tubo: i.1

Data origine: 27/04/01 Quota testa tubo: 0.0 Correzione azimutale: 214° Tipo Sonda: Segea MK4

Committente:

Confraternita della Misericordia

Località:

Cimitero di San Martino a Quona - Pontassieve

Tubo:

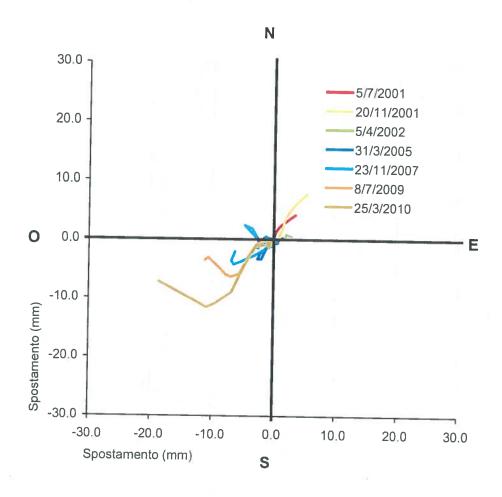
i.1

Data origine:

27/04/01

Quota testa tubo:

0.0


Correzione azimutale:

214°

Tipo Sonda:

Segea MK4

Direzione (proiezione zenitale)

Rapporto di prova n.

228/10

Committente:

Confraternita della Misericordia

Località:

Cimitero di San Martino a Quona - Pontassieve

Tubo:

i.3

Data origine:

27/04/01

Quota testa tubo:

0.0

Correzione azimutale:

216°

Tipo Sonda:

Segea MK4

Calcolo dal basso dello spostamento differenziale (per punti)

	Misura d	el					
Prof. (m)	05/07/01	20/11/01	05/04/02	31/03/05	23/11/07	08/07/09	30/04/10
0.0	1.06	3.54	1.02	2.02	2.03	3.28	3.20
-0.5	0.16	0.08	0.08	0.30	0.25	1.53	2.03
-1.0	0.18	0.03	0.08	0.28	0.33	1.35	1.35
-1.5	0.11	0.09	0.06	0.30	0.36	1.38	1.18
-2.0	0.13	0.10	0.09	0.25	0.15	1,20	1.04
-2.5	0.11	0.13	0.13	0.20	0.20	0.95	0.90
-3.0	0.28	0.13	0.11	0.40	0.25	1.32	0.87
-3.5	0.13	0.08	0.13	0.16	0.07	0.59	0.47
-4.0	0.09	0.13	0.04	0.15	0.15	0.47	0.38
-4.5	0.07	0.14	0.10	0.13	0.16	0.35	0.26
-5.0	0.07	0.06	0.13	0.10	0.10	0.30	0.26
-5.5	0.06	0.13	0.08	0.08	0.18	0.34	0.27
-6.0	0.09	0.20	0.22	0.22	0.22	0.28	0.39
-6.5	0.09	0.06	0.03	0.00	0.10	0.44	0.42
-7.0	0.09	0.20	0.11	0.19	0.11	0.54	0.48
-7.5	0.08	0.20	0.20	0.23	0.20	0.21	0.13
-8.0	0.05	0.23	0.11	0.36	0.39	1.21	1.32
-8.5	0.10	0.32	0.26	1.18	1.18	3.37	4.04
-9.0	0.06	0.13	0.07	1.15	1.05	4.23	5.91
-9.5	0.02	0.08	0.02	0.99	1.03	3.12	4.56
-10.0	0.03	0.16	0.11	0.51	0.57	1.58	2.36
-10.5	0.00	0.13	0.04	0.21	0.18	0.51	0.79
-11.0	0.04	0.18	0.24	0.20	0.29	0.20	0.18
-11.5	0.02	0.18	0.29	0.09	0.17	0.06	0.20
-12.0	0.07	0.45	0.53	0.48	0.48	0.37	0.40
-12.5	0.07	0.06	0.39	0.35	0.44	0.58	0.63
-13.0	0.09	0.24	0.15	0.06	0.09	0.18	0.74
-13.5	0.03	0.41	0.20	0.39	0.39	0.43	0.43
-14.0	0.07	0.38	0.07	0.38	0.33	0.35	0.23

Rapporto di prova n.

228/10

Committente:

Confraternita della Misericordia

Località:

Cimitero di San Martino a Quona - Pontassieve

Tubo:

1.3

Data origine:

27/04/01

Quota testa tubo:

0.0

Correzione azimutale:

216°

Tipo Sonda:

Segea MK4

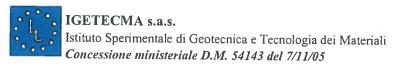
Calcolo dal basso dello spostamento incrementale (risultante)

	Misura d	el					
Prof. (m)	05/07/01	20/11/01	05/04/02	31/03/05	23/11/07	08/07/09	30/04/10
0.0	2.23	1.88	1.92	1.23	3.42	4.31	11.33
-0.5	1.68	3.12	1.21	2.19	2.77	4.27	12.05
-1.0	1,53	3.20	1.13	2.47	2.85	5.46	13.20
-1.5	1.38	3.22	1.06	2.73	2.96	6.78	14.38
-2.0	1.27	3.29	1.04	3.02	3.28	8.10	15.51
-2.5	1.15	3.20	0.98	3.24	3.36	9.26	16.53
-3.0	1.04	3.14	0.86	3.44	3.54	10.20	17.43
-3.5	0.76	3.05	0.78	3.79	3.78	11.50	18.29
-4.0	0.65	2.98	0.65	3.91	3.77	12.06	18.75
-4.5	0.56	2.89	0.63	3.99	3.89	12.48	19.12
-5.0	0.49	2.80	0.63	4.03	4.05	12.78	19.38
-5.5	0.42	2.75	0.52	4.07	4.11	13.07	19.64
-6.0	0.37	2.64	0.46	4.14	4.20	13.41	19.91
-6.5	0.29	2.84	0.43	4.01	4.02	13.30	20.28
-7.0	0.23	2.80	0.40	4.01	4.08	13.74	20.69
-7.5	0.18	2.69	0.35	4.17	4.19	14.27	21.14
-8.0	0.13	2.49	0.41	4.29	4.38	14.46	21.25
-8.5	0.09	2.26	0.51	3.93	4.00	13.25	19.94
-9.0	0.09		0.75	2.75	2.83	9.88	15.92
-9.5	0.14		0.82	1.63	1.78	5.65	10.04
-10.0	0.16		0.84	0.69	0.77	2.53	5.56
-10.5	0.18		0.94	0.28	0.34	0.96	3.29
-11.0	0.18		0.98	0.29	0.27	0.46	2.54
-11.5	0.15			0.38	0.38	0.27	2.36
-12.0	0.13			0.30	0.26	0.33	2.23
-12.5	0.21			0.54	0.28	0.63	2.01
-13.0				0.82	0.68	0.80	1.39
-13.5			0.13	0.77	0.71	0.77	0.65
-14.0	0.07	0.38	0.07	0.38	0.32	0.35	0.23

Committente: Confraternita della Misericordia

Località: Cimitero di San Martino a Quona - Pontassieve

Tubo: i.3


Data origine: 27/04/01 Quota testa tubo: 0.0

Correzione azimutale: 216° Tipo Sonda: Segea MK4

· ·

Calcolo dal basso dell'Azimut

	Misura del						
Prof. (m)	05/07/01	20/11/01	05/04/02	31/03/05	23/11/07	08/07/09	30/04/10
0.0	134.3	133.3	164.6	239.8	214.4	230.0	236.4
-0.5	107.5	47.1	136.9	305.4	250.8	275.0	251.8
-1.0	105.6	46.8	136.4	302.6	255.6	286.4	259.4
-1.5	101.9	46.9	137.2	300.3	261.6	283.8	262.0
-2.0	100.6	47.9	134.3	298.5	264.7	280.8	263.3
-2.5	98.1	47.3	138.1	296.4	266.9	278.8	264.1
-3.0	96.1	45.3	135.6	296.3	268.4	277.9	264.3
-3.5	95.0	43.6	140.3	293.0	269.6	276.7	264.7
-4.0	89.5	43.4	141.8	291.5	270.6	275.7	264.4
-4.5	89.8	45.0	144.0	289.7	269.3	274.8	264.2
-5.0	88.5	42.7	153.1	287.8	269.9	273.9	264.2
-5.5	86.7	43.0	160.7	286.5	268.8	273.6	264.2
-6.0	82.3	41.4	166.4	286.9	271.0	273.6	264.2
-6.5	74.0	41.8	137.3	289.4	272.9	274.7	264.6
-7.0	60.3	42.7	136.9	289.4	274.0	274.8	264.9
-7.5	38.1	39.4	152.1	288.0	274.2	274.7	265.4
-8.0	17.1	38.8	181.6	285.4	274.1	274.3	265.5
-8.5	357.7	38.0	187.0	284.9	273.2	274.3	265.1
-9.0	290.3	38.4	197.1	287.1	270.4	274.2	263.7
-9.5	279.0	39.8	196.4	293.5	269.3	275.2	261.3
-10.0	272.7	40.0	197.5	311.5	258.9	275.4	254.8
-10.5	267.7	43.4	194.4	350.6	216.9	274.8	245.8
-11.0	267.7	46.5	194.2	34.0	185.2	283.4	240.8
-11.5	265.0	53.1	180.3	65.3	136.4	290.3	240.1
-12.0	255.8	50.9	179.5	58.8	114.9	291.5	236.6
-12.5	248.0	38.6	234.0	357.7	350.6	319.4	227.6
-13.0	234.0	35.6	297.4	16.4	15.0	5.2	226.7
-13.5	267.7	35.6	17.1	18.2	22.0	18.2	231.8
-14.0	279.0	30.8	189.0	22.4	31.4	23.7	246.5

Committente:

Confraternita della Misericordia

Località:

Cimitero di San Martino a Quona - Pontassieve

Tubo:

):

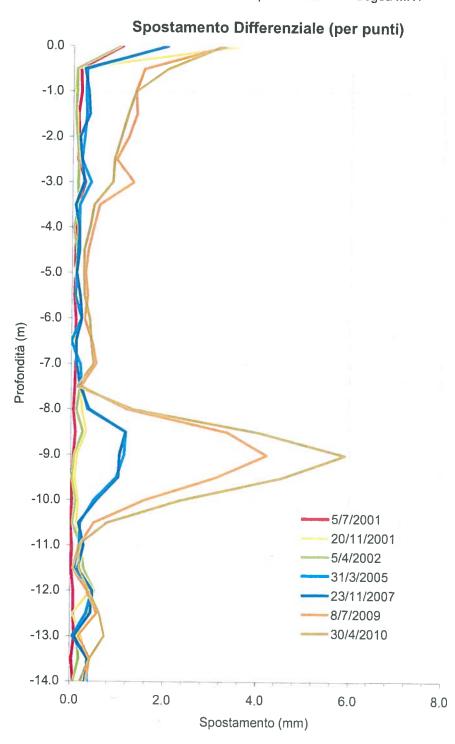
Data origine:

i.3

27/04/01

228/10

Quota testa tubo:


0.0

Correzione azimutale:

216°

Tipo Sonda:

Segea MK4

Committente:

Confraternita della Misericordia

Località:

Cimitero di San Martino a Quona - Pontassieve

Tubo:

i.3

Data origine: Correzione azimutale: 27/04/01 216°

Quota testa tubo:

0.0

7

Tipo Sonda: Segea MK4

Spostamento Incrementale (Risultante) 0.0 -1.0 -2.0 -3.0 -4.0 -5.0 -6.0 Profondità (m) -7.0 -8.0 -9.0 -10.0 5/7/2001 -11.0 20/11/2001 5/4/2002 31/3/2005 -12.023/11/2007 8/7/2009 -13.0 30/4/2010 -14.0 0.0 5.0 10.0 15.0 20.0 25.0 Spostamento (mm)

Committente:

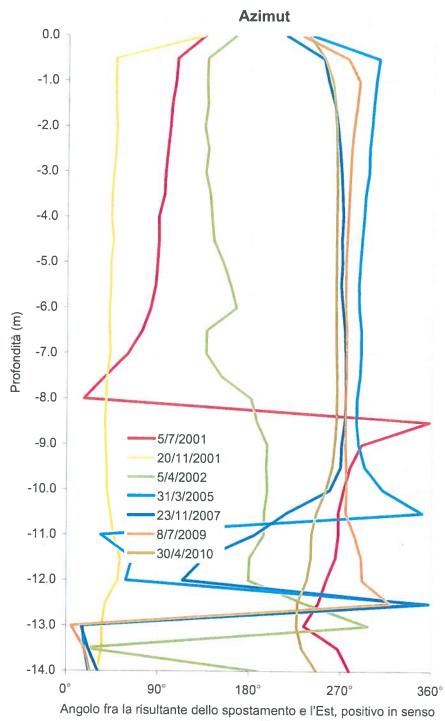
Confraternita della Misericordia

Località:

Cimitero di San Martino a Quona - Pontassieve

Tubo:

i.3


Data origine: Correzione azimutale: 27/04/01 216°

Quota testa tubo:

0.0

Tipo Sonda:

Segea MK4

antiorario

Committente:

Confraternita della Misericordia

Località:

Cimitero di San Martino a Quona - Pontassieve

Tubo:

i.3

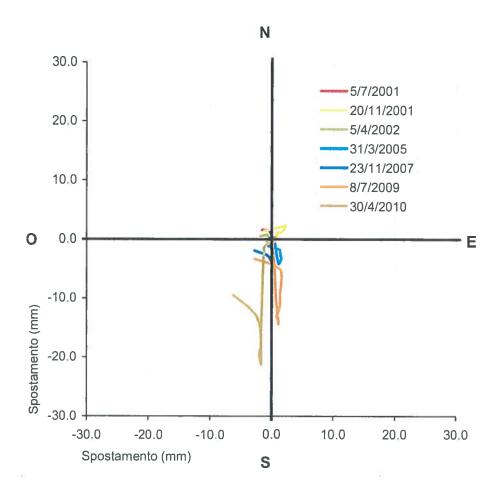
Data origine:

Correzione azimutale:

27/04/01

0400

Quota testa tubo:


0.0

216°

Tipo Sonda:

Segea MK4

Direzione (proiezione zenitale)

Allegato B4

Aggiornamento del monitoraggio inclinometrico all'agosto 2016 per la canna I1/S1e al dicembre 2016 per la verticale I3/S3 (Dott. E. Focardi, agosto/dicembre 2016)

PROVINCIA DI: FIRENZE

COMUNE DI: PONTASSIEVE

LOCALITÀ: CIMITERO DELLA MISERICORDIA

PROPRIETÀ: VENERABILE CONFRATERNITA DI MISERICORDIA DI PONTASSIEVE

OGGETTO: aggiornamento misure inclinometriche

NOTA GEOLOGICA DI ACCOMPAGNAMENTO

Pontassieve 27 agosto 2016

CIMITERO DELLA MISERICORDIA DI PONTASSIEVE AGGIORNAMENTO LETTURE INCLINOMETRICHE

La presente nota accompagna l'aggiornamento delle letture inclinometriche effettuate presso il cimitero della venerabile Confraternita della Misericordia a Pontassieve in via di San Martino a Quona. Tali misure sono relative agli inclinometri posizionati e monitorati dal 24/04/2001 (lettura di zero) in relazione alla richiesta variante allo Strumento Urbanistico Comunale per l'ampliamento del Cimitero stesso stante nella zona la classe di pericolosità 4. La richiesta fu corredata della necessaria indagine geologico tecnica (a firma dello scrivente) ai sensi della D.R. 94/85 corredata di un progetto di bonifica (ing. Lapi). Le indagini e progetto di bonifica furono depositate al Genio Civile di Firenze con certificazione di adeguatezza delle indagini geologiche ai sensi della L.R. 05/95 (deposito 1352 del 30/01/2002). Trattandosi di una pratica soggetta a controllo obbligatorio (P4) il Genio Civile di Firenze la esaminò nel dettaglio e successivamente, nei termini di Legge, espresse il proprio nulla osta.

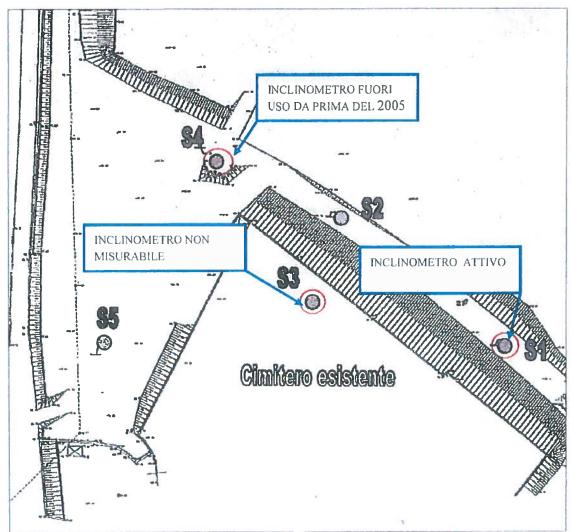
Le letture furono aggiornate nel 2005 e successivamente nel 2007, 2008 e 2010 per supportare adeguatamente la presentazione del Piano Attuativo e per la stesura del progetto esecutivo di bonifica e consolidamento.

l certificati che attestano i risultati delle letture sono allegati alla nota ed in merito a questi si osserva quanto segue:

- Inclinometro 1: le deformate non mostrano sostanziali differenze con le misure precedenti. Si notano movimenti nella parte sommitale (primi 2.5 3 m), irregolari e non attribuibili con certezza a movimenti di versante, ma più propriamente a fenomeni intrinseci alla natura argillosa e plastica dei terreni presenti. Procedendo in profondità si notano leggeri scostamenti puntuali di entità inferiore al millimetro, quindi rientranti nell'errore strumentale, da potersi correlare anche con semplici irregolarità di assemblaggio del tubo. Con gli anni il movimento della porzione sommitale della scarpata si è incrementato fino a 20 mm nel differenziale per punti e fino a 50 mm nella sommatoria. Si deve però notare che questi spostamenti (comunque millimetrici) sono avvenuti nell'arco di 15 anni, trattasi cioè di movimenti molto lenti e comunque ridotti dovuti agli assestamenti del suolo superficiale per l'alternanza di fenomeni di essiccazione e reidratazione delle argille.
- Inclinometro l₂: questo strumento è stato reso inutilizzabile già dal 2005 in quanto intasato probabilmente con materiale esterno. Allo stesso modo sono stati

- resi inutilizzabili i piezometri. Fino ad allora non aveva comunque mostrato indizi di movimento.
- Inclinometro I₃: nelle letture del 2005 la deformata relativa al differenziale per punti mostrava uno spostamento di circa 1 mm fra 8 e 10 m di profondità (grosso modo nella zona di passaggio fra i materiali di copertura alterati ed i litotipi argillitico marnosi in posto). L'entità dello spostamento è di circa 1 mm con una deformata non puntuale, ma comprendente una fascia più ampia (circa 2 m); quindi, più che attribuibile a problemi connessi all'allestimento del tubo inclinometrico stesso, potrebbe essere messa in relazione ad una certa "sofferenza" della fascia di terreno al passaggio con il substrato. Questa "sofferenza" è stata confermata con le letture del 2007-2009 che furono effettuate di supporto alla redazione del progetto esecutivo di consolidamento e bonifica e nel 2010 dove in effetti si nota una progressione del movimento. Allo stato attuale, come risulta anche dal certificato della Ditta Igetecma, non è stato possibile ripetere la misura in quanto la muratura a sbalzo della parte basale dei loculi realizzati in prossimità del boccaforo impedisce l'accesso della sonda inclinometrica al tubo.

In riferimento al progetto di bonifica e consolidamento si ritiene che questo sia tuttora valido. Oltre che una salvaguardia nel caso di esecuzione degli scavi connessi al progetto di ampliamento, la realizzazione del progetto migliorerà la stabilità del versante (anche in relazione allo stato riscontrato nell'inclinometro l₃ interno al cimitero esistente) alleggerendo le spinte da monte, trattenute dalla palificata, ed abbassando la piezometrica con trincee drenanti. Non potendo ripetere la misura sull'inclinometro l₃ si è provveduto ad effettuare un accurato controllo sul quadro fessurativo presente nelle strutture del cimitero esistente, soprattutto nella sua parte nuova dove è posizionato detto inclinometro. Nel corso dei rilievi non si sono individuate fratture e lesioni di neoformazione rispetto a quanto rilevato negli anni passati. In alcuni punti già ritratti in foto nel 2010 sono state fatte le foto di controllo per ravvisare le eventuali differenze o evoluzioni, ma l'analisi non mostra variazioni significative. Da questo e dall'esame morfologico dei luoghi si evince che se anche quanto individuato con le letture del 2009 e 2010 avesse avuto una sua naturale progressione, questo non trova un riflesso in superficie.


L'insieme dei dati acquisiti permette di ricostruire un quadro generale che concorda con la presenza di un movimento di limitata estensione il cui corpo è disposto secondo una direzione all'incirca nord – sud; questo sembra compatibile e si pensa possa

essere messo in relazione con la presenza di un vecchio impluvio poi obliterato con le varie modificazioni morfologiche resesi necessarie per la realizzazione dell'area cimiteriale nella parte nord est della pendice. Probabilmente le acque che fluivano in quella parte di versante non sono state del tutto drenate e reincanalate per cui il perdurare di un deflusso ipodermico non controllato continua a causare l'imbibizione dei terreni argillosi che compongono questo versante provocando il decadimento delle caratteristiche tecniche con conseguente propensione alla instabilità. Il movimento rilevato dall'inclinometro può quindi collocarsi in questo contesto.

Il progetto di ampliamento oggetto della Variante ambito P.5 ed il successivo progetto di consolidamento e bonifica (2008-2009) esposto nei suoi caratteri principali già in sede della Variante stessa prevede la realizzazione di opere di risanamento e consolidamento (trincee drenanti, pozzi drenanti, opere di contenimento, ecc.). Sulla base di quanto rilevato con questo aggiornamento delle misure e dei rilievi di superficie, si ritiene il progetto ancora valido e la sua realizzazione porterà sicuramente un beneficio per l'area contrastando l'evoluzione del quadro descritto.

Pontassieve, 27 agosto 2016

Geologo Dott. Enrico For

Ubicazione indagini (rappresentazione non in scala)

- © Ubicazione sondaggio attrezzato con inclinometro
- (a) Ubicazione sondaggio attrezzato con piezometro

^{*} i piezometri non sono più in uso

Laboratorio autorizzato con D.M. n. 54143 del 07/11/2005 ai sensi della Circolare 08/09/10 n. 7618/STC Esecuzione e certificazione prove geotecniche – settore A Laboratorio autorizzato con D.M. n. 162 del 19/04/2011 ai sensi dell'art. 20 della L. n. 1086/71

Prove e controlli su strutture e materiali da costruzione – settore Λ

Rapporto di Prova n°221/16/I

Montelupo Fiorentino 09/08/2016

SETTORE:

Misure Inclinometriche

COMMITTENTE:

Confraternita di Misericordia di Pontassieve

RICHIEDENTE:

Geol. E. Focardi

CANTIERE:

Cimitero di San Martino a Quona, Pontassieve (FI)

RIFERIMENTO:

R.P.E. n°239/16

Indice:

Premessa

- 1 Procedure di campagna
- 2 Metodo di elaborazione dei dati
- 3 Presentazione dei dati
- 4 Caratteristiche della strumentazione

Il Direttore del Laboratorio

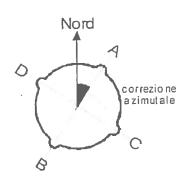
ing. F. Politi

Il Tecnico

Geol. L. Gambassi

frances Pelle

Premessa


Per conto della Confraternita di Misericordia di Pontassieve, su richiesta del Geol. E. Focardi, sono state eseguite una serie di letture inclinometriche per il controllo del versante presso il Cimitero di San Martino a Quona a Pontassieve (FI). Tali letture, le ottave in serie iniziata con la lettura di riferimento ("zero") del 27/04/2001, sono state eseguite con passo di 0.5 m su 2 guide tramite sonda inclinometrica di tipo biassiale con servoaccelerometri, nel foro I1.

Non è stato possibile eseguire le letture all'interno del tubo I3, ubicato all'interno del Cimitero, in quanto la muratura a sbalzo, sovrastante il boccaforo, impedisce l'accesso al tubo stesso. Tramite le misure inclinometriche è possibile ottenere informazione sull'entità e sulla direzione di movimenti orizzontali del terreno: ciò si ottiene mediante la misura, ad intervalli regolari, dell'inclinazione di un tubo infisso nel terreno e munito di apposite guide di riferimento; confrontando letture eseguite a distanza di tempo è possibile calcolare la variazione dell'inclinazione e quindi stabilire l'entità e la direzione di eventuali movimenti del terreno.

1 Procedure di campagna

La misura inclinometrica consiste nel calare mediante un cavo nel tubo provvisto di scanalature dette guide, una sonda in grado di rilevare l'inclinazione del tubo stesso, reso solidale al terreno da cementazione: la sonda inclinometrica è costituita da un fusto d'acciaio con due carrelli, posti a distanza di 0.5 m l'uno dall'altro, muniti di due coppie di ruote che si inseriscono nelle guide.

La sonda inclinometrica è di tipo biassiale, munita cioè di due sensori servoaccelerometrici ortogonali fra di loro, posti nella parte centrale della sonda; in questo modo viene misurata

l'inclinazione dalla verticale del tubo su due piani verticali tra loro ortogonali (piani AB e CD, vedi schema in figura).

Le misure vengono eseguite a coppie su guide diametralmente opposte: la prima risalita misura il seno degli angoli tra la verticale e le guide A e C, e la seconda risalita, fatta dopo aver ruotato la sonda di 180°, misura il seno degli angoli tra la verticale e le guide B e D. Si ottengono così quattro valori (LatoA, LatoB, LatoC e LatoD) che sommati a coppie (lati opposti della guida: A+B e C+D) forniscono

l'inclinazione del tubo alle varie quote; questa metodologia è usata per eliminare eventuali scostamenti dallo zero dei sensori servoaccelerometrici. Le misure vengono eseguite

secondo il passo desiderato di 0.5 m o 1.0 m. Ciascuna misura è relativa al tratto di tubazione pari alla distanza tra i carrelli e viene riferita alla quota del carrello superiore. Le profondità sono riferite alla testa del tubo inclinometrico.

Come guida di riferimento viene scelta quella che più si avvicina alla direzione della massima pendenza e che viene indicata come guida A; la correzione azimutale è l'angolo formato tra il Nord geografico e la guida A di riferimento, preso in senso orario da Nord verso Est; secondo questa convenzione l'angolo è sempre positivo (compreso tra 0° e 360°).

Tramite il cavo di collegamento multipolare con anima in kevlar inestensibile, i dati vengono inviati ad una centralina digitale che ne permette la visualizzazione e la memorizzazione per le successive elaborazioni.

2 Metodo di elaborazione dei dati

Il software di elaborazione trasforma, per ogni quota, i dati misurati da sen α in spostamenti cioè in millimetri di deviazione dalla verticale secondo le relazioni:

```
SEN(Alfa_AB) = (LatoA - LatoB) / 2

SEN(Alfa_CD) = (LatoC - LatoD) / 2

D_AB = P * SEN(Alfa_AB)

D_CD = P * SEN(Alfa_CD)
```

dove LatoA, LatoB, LatoC e LatoD sono le misure dei seni degli angoli alle varie quote, Alfa_AB e Alfa_CD sono gli angoli di deviazione dalla verticale nei due piani ortogonali e D_AB e D_CD sono le deviazioni dalla verticale nel piano AB e nel piano CD; P è l'intervallo di misura detto passo.

Mediante le formule del calcolo vettoriale si ricava la deviazione, che ha come modulo il valore D pari a:

$$D = Sqr (D_AB^2 + D_CD^2)$$

e come direzione l'angolo Alfa rispetto agli assi AB e CD:

Questo procedimento viene ripetuto per ciascuna quota, ottenendo l'elaborazione in assoluto per punti (deviazione incrementale); sommando in maniera vettoriale tutti i contibuti a partire dal basso si ottiene l'elaborazione in assoluto per sommatoria (deviazione cumulativa), che rappresenta la reale posizione del tubo rispetto alla verticale. Questa elaborazione viene generalmente visualizzata per la sola lettura di zero, al fine di controllare la verticalità del tubo.

Ripetendo le misure a distanza di tempo è possibile confrontare la deviazione del tubo rispetto a quella che aveva alla lettura di zero: questo calcolo, eseguito come differenza tra

Rapporto	di prova	n°221/16/l	

vettori, fornisce l'elaborazione in differenziale. Mediante l'elaborazione in differenziale viene calcolato lo spostamento avvenuto fra le letture: lo spostamento per punti mostra il contributo di ciascuna quota, mentre lo spostamento risultante, ottenuto sommando in maniera vettoriale tutti i contributi a partire dal basso, fornisce il totale del movimento.

La direzione del movimento è indicata dall'Azimut, angolo che è formato tra la direzione del vettore spostamento risultante, ed il Nord geografico; anche per questo angolo viene adottata la convenzione di misurarlo da Nord verso Est nel campo 0°-360°.

La Tabella seguente riassume le specifiche del tubo: le coordinate sono state ottenute mediante GPS non differenziale e sono affette da un errore stimabile nell'ordine dei 10 m, mentre la quota del tubo è stata ricavata dalla Cartografia Tecnica della Regione Toscana.

Tubo I1	Lunghezza tubo	14.0 m
	Correzione azimutale:	N 214° E
	Quota testa tubo:	193 m slm
	Coordinate GPS:	N 43.781989° E 11.426906°
	Data lettura di zero:	27/04/2001

3 Presentazione dei dati

Nella presente relazione vengono forniti i seguenti elaborati:

- ubicazioni del tubo inclinometrico
- tabelle (ultima lettura):
 - · dati di campagna
 - elaborazione in differenziale calcolo vettoriale dal basso: spostamento differenziale, azimut differenziale, spostamento risultante, azimut risultante
- grafici (tutte le letture):
 - profondità/azimut differenziale e profondità/spostamento differenziale (per punti)
 - profondità/azimut risultante e profondità/spostamento risultante (per sommatoria)
 - spostamento risultante in proiezione zenitale (assi Nord-Sud e Est-Ovest).
- documentazione fotografica tubo 13 (non accessibile)

4 Caratteristiche della strumentazione

Il sistema di acquisizione usato nella presente campagna d'indagine è così composto

- Sonda inclinometrica biassiale tipo a servoaccelerometri SEGEA mod. MK4:
 - Campo di misura operativo ±30° dalla verticale
 - Linearità 0.02 % F.S.
 - Temperatura di esercizio da -5°C a +60°C

Rapporto di prova n°221/16/I	
------------------------------	--

- Deriva di sensibilità ±0.15% della lettura per °C
- Deriva di zero ±0.01% F.S. per °C
- Lunghezza di riferimento 500 mm
- Centralina di acquisizione automatica dati Geotechnical Instrument.
 - Risoluzione 16 bit (0.0001 sen α)
 - Campo di misura ±0.50 m
- Cavi multipolari inestensibili di lunghezza di 35 e 80 m con tacche di misura ogni 50 cm

Committente: Località: Confraternita di Misericordia di Pontassieve Cimitero di San Martino a Quona - Pontassieve

Ubicazione

Rapporto di prova n.

221/16

Committente:

Confraternita di Misericordia di Pontassieve Cimitero di San Martino a Quona - Pontassieve

Tubo:

Località:

Coordinate:

N 43.781821° E 11.427503°

Data lettura di zero:

27/04/01

Quota testa tubo:

193.0

Correzione azimutale:

N 214 E

Tipo Sonda:

Segea MK4 - 10000 sen(A)

Dati di campagna - valori di sen(alfa)

Misura n°	Prof. da a (m)	LatoA	LatoB	LatoC	LatoD
		sen(alfa)	sen(alfa)	sen(alfa)	sen(alfa)
1	0.0-0.5	0.01130	-0.01080	-0.00730	0.00490
2	0.5-1.0	0.01130	-0.01090	-0.00720	0.00480
3	1.0-1.5	0.01200	-0.01170	-0.00690	0.00440
4	1.5-2.0	0.01300	-0.01270	-0.00620	0.00360
5	2.0-2.5	0.01270	-0.01230	-0.00650	0.00410
6	2.5-3.0	0.01290	-0.01240	-0.00420	0.00170
7	3.0-3.5	0.01410	-0.01370	-0.00550	0.00320
8	3.5-4.0	0.01400	-0.01360	-0.00510	0.00260
9	4.0-4.5	0.01390	-0.01350	-0.00570	0.00320
10	4.5-5.0	0.01430	-0.01390	-0.00650	0.00390
11	5.0-5.5	0.01370	-0.01320	-0.00660	0.00420
12	5.5-6.0	0.01350	-0.01360	-0.00780	0.00520
13	6.0-6.5	0.01320	-0.01290	-0.00810	0.00560
14	6.5-7.0	0.01280	-0.01240	-0.00800	0.00550
15	7.0-7.5	0.01230	-0.01190	-0.00780	0.00560
16	7.5-8.0	0.01150	-0.01110	-0.00740	0.00540
17	8.0-8.5	0.01080	-0.01050	-0.00770	0.00550
18	8.5-9.0	0.01100	-0.01060	-0.00820	0.00590
19	9.0-9.5	0.01140	-0.01100	-0.00720	0.00480
20	9.5-10.0	0.01270	-0.01230	-0.00910	0.00690
21	10.0-10.5	0.01320	-0.01290	-0.01060	0.00850
22	10.5-11.0	0.01240	-0.01200	-0.01130	0.00890
23	11.0-11.5	0.01270	-0.01230	-0.01170	0.00930
24	11.5-12.0	0.01180	-0.01140	-0.00690	0.00460
25	12.0-12.5	0.01180	-0.01140	-0.00600	0.00360
26	12.5-13.0	0.01220	-0.01190	-0.00640	0.00400
27	13.0-13.5	0.01300	-0.01260	-0.00620	0.00390
28	13.5-14.0	0.01350	-0.01310	-0.00570	0.00340

Laboratorio autorizzato con D.M. n. 54143 del 07/11/2005 ai sensi della Circolare 08/09/10 n. 7618/STC Laboratorio autorizzato con D.M. n. 162 del 19/04/2011 ni sensi dell'art. 20 della L. n. 1086/71

Laboratorio agrotizzato con Estas il 102 del 1370 1/2011 il testo del anti-

Rapporto di prova n.

Committente:

Confraternita di Misericordia di Pontassieve

Località:

Cimitero di San Martino a Quona - Pontassieve

Tubo:

11

Coordinate:

N 43.781821 E 11.427503

Data lettura di zero:

27/04/01

221/16

Quota testa tubo:

193.0

Correzione azimutale:

N 214°E

Tipo Sonda:

Segea MK4 - 10000 sen(A)

Elaborazione in differenziale - Calcolo vettoriale dal basso

05/07/01 Lettura n. 1 del Spostamento Azimut Azimut Spostamento Risultante Risultante Differenziale Differenziale Prof. da a (m) Misura nº (da Nord verso Est) (sommatoria - mm) (da Nord verso Est) (per punti - mm) 40° 5.41 55° 0.0-0.5 1.55 34° 3.92 51° 0.5-1.0 1.15 2 28° 45° 2.84 0.79 1.0-1.5 3 22° 2.10 0.45 34° 1.5-2.0 4 18° 1.66 30° 0.40 2.0-2.5 5 1.27 15° 27° 0.20 6 2.5-3.0 12° 34° 1.08 3.0-3.5 0.15 7 9" 7° 0.94 0.17 8 3.5-4.0 9° 0.77 0.09 0° 4.0-4.5 9 0.68 10° 0.06 7° 4.5-5.0 10 0.63 11° 304° 0.05 11 5.0-5.5 15° 124° 0.61 0.05 12 5.5-6.0 11° 0.63 0.04 349° 13 6.0-6.5 12° 0.59 7° 0.06 6.5-7.0 14 12° 0.54 349° 7.0-7.5 0.04 15 14° 0.51 34° 0.05 16 7.5-8.0 12° 0.46 7° 0.06 8.0-8.5 17 12° 0.40 0.04 349° 8.5-9.0 18 14° 0.37 0.04 349° 9.0-9.5 19 17° 0.34 331° 0.06 9.5-10.0 20 25° 97° 0.30 0.06 21 10.0-10.5 14 0.29 34° 0.05 22 10.5-11.0 10° 0.25 52° 0.08 23 11.0-11.5 331° 0.19 354° 24 11.5-12.0 0.06 7° 3° 0.15 25 12.0-12.5 0.06 34° 0° 0.09 0.03 26 12.5-13.0 349° 0.07 0.04 349° 27 13.0-13.5 349° 0.04 0.04 349° 13.5-14.0 28

Laboratorio autorizzato con D.M. n. 54143 del 07/11/2005 ai sensi della Circolare 08/09/10 n. 7618/STC Laboratorio autorizzato con D.M. n. 162 del 19/04/2011 ai sensi dell'art. 20 della L. n. 1086/71

Rapporto di prova n.

221/16

Committente: Località:

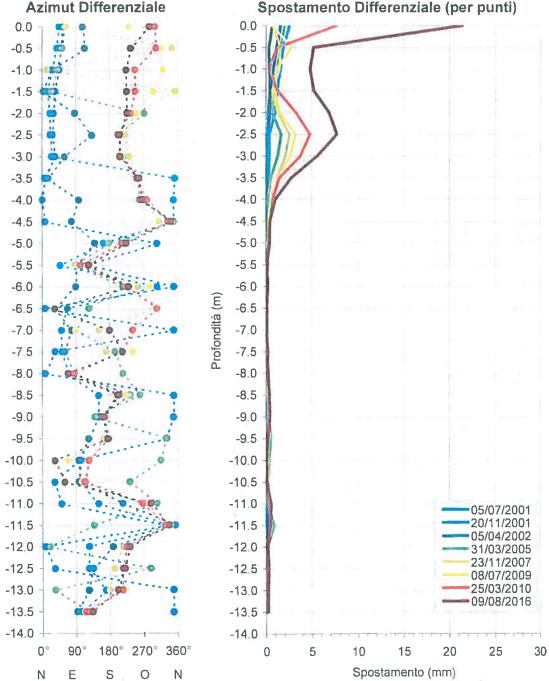
Confraternita di Misericordia di Pontassieve Cimitero di San Martino a Quona - Pontassieve

Tubo:

Coordinate:

N 43.781821° E 11.427503°

Data lettura di zero:


27/04/01

Quota testa tubo: Tipo Sonda:

193.0 Segea MK4 = 10000 sen(A)

N 214°E Correzione azimutale:

Spostamento Differenziale (per punti)

Igetecma s.n.c. - Via delle Pratella n. 18/20 - 50056 Montelupo F.no - tel. 05711738160 fax 05711979995 P.I. 04576560488 - C.C.I.A.A. FI 462056 - Iscr. Trib. FI 69963 - www.igetecma.eu

Laboratorio autorizzato con D.M. n. 54143 del 07/11/2005 ai sensi della Circolate 08/09/10 n. 7618/STC Laboratorio autorizzato con D.M. n. 162 del 19/04/2011 ai sensi dell'art. 20 della L. n. 1086/71

221/16 Rapporto di prova n.

Committente: Località:

Confraternita di Misericordia di Pontassieve Cimitero di San Martino a Quona - Pontassieve

Tubo:

Data lettura di zero:

11

Coordinate

N 43 781821° E 11 427503°

Quota testa tubo:

193.0

Correzione azimutale:

27/04/01 N 214°E

Tipo Sonda:

Segea MK4 - 10000 sen(A)

Azimut Risultante Spostamento Risultante (sommatoria) 0.0 -0.5 -0.5 -1.0 -1.0 -1.5 -1.5 -2.0 -2.0-2.5 -2.5 -3.0 -3.0-3.5 -3.5 -4.0 -4.0-4.5 -4.5 -5.0 -5.0 -5.5 -5.5 -6.0 -6.0Profondita (m) -6.5 -6.5 -7.0-7.0 -7.5 -7.5 -8.0 -8.0 -8.5 -8.5 -9.0 -9.0 -9.5 -9.5 -10.0 -10.0-10.5 -10.5-11.0 -11.0 05/07/2001 20/11/2001 -11.5 -11.505/04/2002 -12.0-12.031/03/2005 23/11/2007 -12.5 -12.5 08/07/2009 25/03/2010 -13.0 -13.009/08/2016 -13.5 -13.5 -14.0 -14.050 60 360 0 10 20 30 40 0 180° 270 90 Spostamento (mm) Ε S 0 Ν N

Committente: Località: Confraternita di Misericordia di Pontassieve Cimitero di San Martino a Quona - Pontassieve

Tubo:

11

Coordinate:

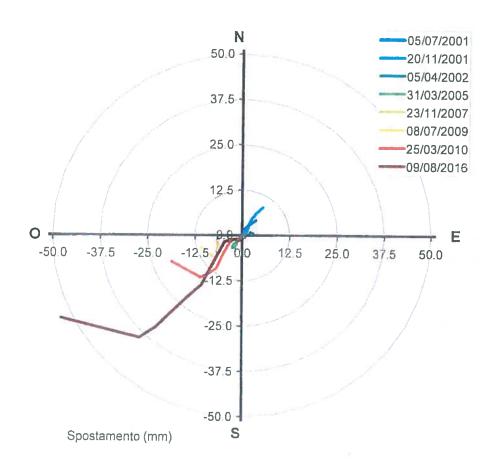
N 43.781821 E 11.427503

Data lettura di zero:

27/04/01

Quota testa tubo:

193.0


Correzione azimutale:

N 214°E

Tipo Sonda:

Segea MK4 - 10000 sen(A)

Direzione (proiezione zenitale)

Laboratorio autorizzato con D.M. n. 54143 del 07/11/2005 ai sensi della Circolare 08/09/10 n. 7618/STC Laboratorio autorizzato con D.M. n. 162 del 19/04/2011 ai sensi dell'art. 20 della L. n. 1086/71

Rapporto di prova n. 221/16

Committente: Località: Confraternita di Misericordia di Pontassieve

Cimitero di San Martino a Quona - Pontassieve

Tubo:

13

Coordinate:

N 43.781989 E 11.426906

Data lettura di zero:

27/04/01 N 216°E Quota testa tubo:

185.0

Correzione azimutale:

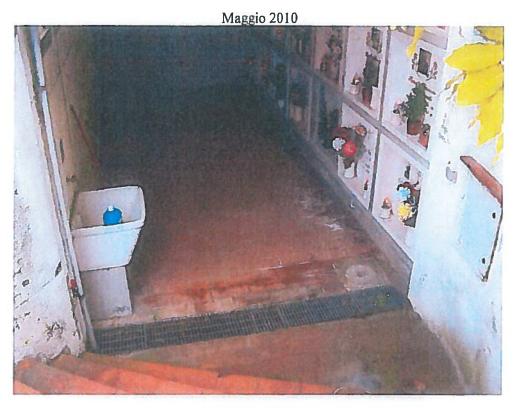
Tipo Sonda:

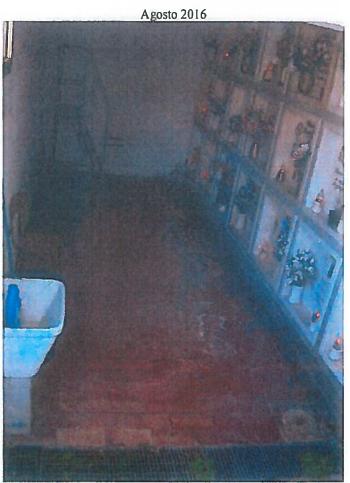
Segea MK4 - 10000 sen(A)

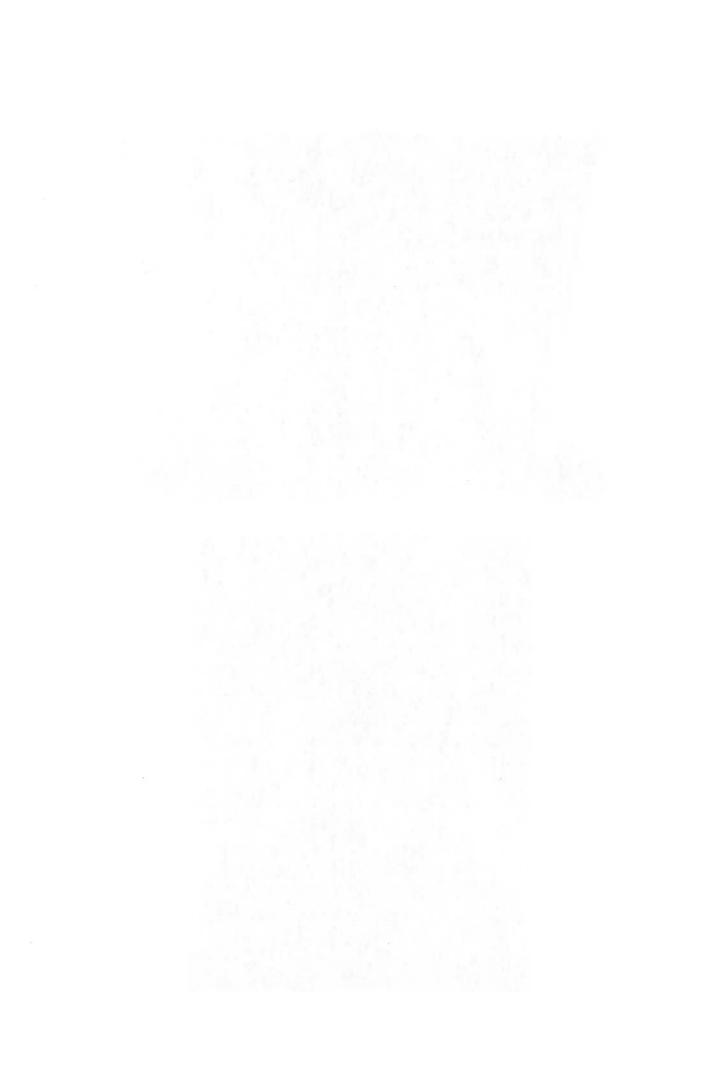
Documentazione fotografica

La muratura a sbalzo, sovrastante il boccaforo, impedisce l'accesso al tubo.

Igetecma s.n.c. - Via delle Pratella n. 18/20 - 50056 Montelupo F.no - tel. 05711738160 fax 05711979995 P.1. 04576560488 - C.C.I.A.A. FI 462056 - Iscr. Trib. FI 69963 - www.igetecma.eu


Comparazione Fotografica 2010 - 2016





IGETECMA s.n.c. Istituto Sperimentale di Geotecnica e Tecnologia dei Materiali

Laboratorio autorizzato con D.M. n. 54143 del 07/11/2005 ai sensi della Circolare 08/09/10 n. 7618/STC Esecuzione e certificazione prove geotecniche – settore A Laboratorio autorizzato con D.M. n. 162 del 19/04/2011 ai sensi dell'art. 20 della L. n. 1086/71 Prove e controlli su strutture e materiali da costruzione – settore A

Rapporto di Prova n°364/16/I

Montelupo Fiorentino 16/12/2016

SETTORE:

Misure Inclinometriche

COMMITTENTE:

Confraternita di Misericordia di Pontassieve

RICHIEDENTE:

Geol. E. Focardi

CANTIERE:

Cimitero di San Martino a Quona, Pontassieve (FI)

RIFERIMENTO:

R.P.E. n°356/16

Indice:

Premessa

- 1 Procedure di campagna
- 2 Metodo di elaborazione dei dati
- 3 Presentazione dei dati
- 4 Caratteristiche della strumentazione

Il Direttore del Laboratorio

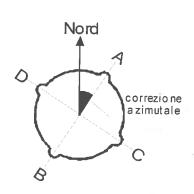
Ing. F. Politi

II Tecnico

Geol, L. Gambassi

Sees Jancon.

Premessa


Per conto della Confraternita di Misericordia di Pontassieve, su richiesta del Geol. E. Focardi, sono state eseguite una serie di letture inclinometriche per il controllo del versante presso il Cimitero di San Martino a Quona a Pontassieve (FI). Tali letture, le ottave in serie iniziata con la lettura di riferimento ("zero") del 27/04/2001, sono state eseguite con passo di 0.5 m su 2 guide tramite sonda inclinometrica di tipo biassiale con servoaccelerometri, nel foro I3.

Tramite le misure inclinometriche è possibile ottenere informazione sull'entità e sulla direzione di movimenti orizzontali del terreno: ciò si ottiene mediante la misura, ad intervalli regolari, dell'inclinazione di un tubo infisso nel terreno e munito di apposite guide di riferimento; confrontando letture eseguite a distanza di tempo è possibile calcolare la variazione dell'inclinazione e quindi stabilire l'entità e la direzione di eventuali movimenti del terreno.

1 Procedure di campagna

La misura inclinometrica consiste nel calare mediante un cavo nel tubo provvisto di scanalature dette guide, una sonda in grado di rilevare l'inclinazione del tubo stesso, reso solidale al terreno da cementazione: la sonda inclinometrica è costituita da un fusto d'acciaio con due carrelli, posti a distanza di 0.5 m l'uno dall'altro, muniti di due coppie di ruote che si inseriscono nelle guide.

La sonda inclinometrica è di tipo biassiale, munita cioè di due sensori servoaccelerometrici ortogonali fra di loro, posti nella parte centrale della sonda; in questo modo viene misurata

l'inclinazione dalla verticale del tubo su due piani verticali tra loro ortogonali (piani AB e CD, vedi schema in figura).

Le misure vengono eseguite a coppie su guide diametralmente opposte: la prima risalita misura il seno degli angoli tra la verticale e le guide A e C, e la seconda risalita, fatta dopo aver ruotato la sonda di 180°, misura il seno degli angoli tra la verticale e le guide B e D. Si ottengono così quattro valori (LatoA, LatoB, LatoC e LatoD) che sommati a coppie (lati opposti della guida: A+B e C+D) forniscono

l'inclinazione del tubo alle varie quote; questa metodologia è usata per eliminare eventuali scostamenti dallo zero dei sensori servoaccelerometrici. Le misure sono state eseguite secondo il passo di 0.5 m. Ciascuna misura è relativa al tratto di tubazione pari alla distanza

Rapi	orto	di i	prova n°364/16/l _.	

tra i carrelli e viene riferita alla quota del carrello superiore. Le profondità sono riferite alla testa del tubo inclinometrico.

Come guida di riferimento viene scelta quella che più si avvicina alla direzione della massima pendenza e che viene indicata come guida A; la correzione azimutale è l'angolo formato tra il Nord geografico e la guida A di riferimento, preso in senso orario da Nord verso Est; secondo questa convenzione l'angolo è sempre positivo (compreso tra 0° e 360°).

Tramite il cavo di collegamento multipolare con anima in kevlar inestensibile, i dati vengono inviati ad una centralina digitale che ne permette la visualizzazione e la memorizzazione per le successive elaborazioni.

2 Metodo di elaborazione dei dati

Il software di elaborazione trasforma, per ogni quota, i dati misurati da sen α in spostamenti cioè in millimetri di deviazione dalla verticale secondo le relazioni:

```
SEN(Alfa_AB) = (LatoA - LatoB) / 2

SEN(Alfa_CD) = (LatoC - LatoD) / 2

D_AB = P * SEN(Alfa_AB)

D_CD = P * SEN(Alfa_CD)
```

dove LatoA, LatoB, LatoC e LatoD sono le misure dei seni degli angoli alle varie quote, Alfa_AB e Alfa_CD sono gli angoli di deviazione dalla verticale nei due piani ortogonali e D_AB e D_CD sono le deviazioni dalla verticale nel piano AB e nel piano CD; P è l'intervallo di misura detto passo.

Mediante le formule del calcolo vettoriale si ricava la deviazione, che ha come modulo il valore D pari a:

$$D = Sqr (D_AB^2 + D_CD^2)$$

e come direzione l'angolo Alfa rispetto agli assi AB e CD:

Questo procedimento viene ripetuto per ciascuna quota, ottenendo l'elaborazione in assoluto per punti (deviazione incrementale); sommando in maniera vettoriale tutti i contibuti a partire dal basso si ottiene l'elaborazione in assoluto per sommatoria (deviazione cumulativa), che rappresenta la reale posizione del tubo rispetto alla verticale. Questa elaborazione viene generalmente visualizzata per la sola lettura di zero, al fine di controllare la verticalità del tubo.

Ripetendo le misure a distanza di tempo è possibile confrontare la deviazione del tubo rispetto a quella che aveva alla lettura di zero: questo calcolo, eseguito come differenza tra vettori, fornisce l'elaborazione in differenziale. Mediante l'elaborazione in differenziale viene

Rapporto	di prova	n°364/16/I
----------	----------	------------

calcolato lo spostamento avvenuto fra le letture: lo spostamento per punti mostra il contributo di ciascuna quota, mentre lo spostamento risultante, ottenuto sommando in maniera vettoriale tutti i contributi a partire dal basso, fornisce il totale del movimento.

La direzione del movimento è indicata dall'Azimut, angolo che è formato tra la direzione del vettore spostamento risultante, ed il Nord geografico; anche per questo angolo viene adottata la convenzione di misurarlo da Nord verso Est nel campo 0°-360°.

La Tabella seguente riassume le specifiche del tubo: le coordinate sono state ottenute mediante GPS non differenziale e sono affette da un errore stimabile nell'ordine dei 10 m, mentre la quota del tubo è stata ricavata dalla Cartografia Tecnica della Regione Toscana.

Tubo I3	Lunghezza tubo	14.5 m
	Correzione azimutale:	N 216° E
	Quota testa tubo:	185 m slm
	Coordinate GPS:	N 43.781989° E 11.426906°
	Data lettura di zero:	27/04/2001

3 Presentazione dei dati

Nella presente relazione vengono forniti i seguenti elaborati:

- ubicazioni del tubo inclinometrico
- tabelle (ultima lettura):
 - · dati di campagna
 - elaborazione in differenziale calcolo vettoriale dal basso: spostamento differenziale, azimut differenziale, spostamento risultante, azimut risultante
- grafici (tutte le letture):
 - profondità/azimut differenziale e profondità/spostamento differenziale (per punti)
 - profondità/azimut risultante e profondità/spostamento risultante (per sommatoria)
 - spostamento risultante in proiezione zenitale (assi Nord-Sud e Est-Ovest).
- documentazione fotografica tubo I3 (non accessibile)

4 Caratteristiche della strumentazione

Il sistema di acquisizione usato nella presente campagna d'indagine è così composto

- Sonda inclinometrica biassiale tipo a servoaccelerometri SEGEA mod. MK4:
 - Campo di misura operativo ±30° dalla verticale
 - Linearità 0.02 % F.S.
 - Temperatura di esercizio da -5°C a +60°C
 - Deriva di sensibilità ±0.15% della lettura per °C

Rapporto d	li prova	n°364/16/l	 	

- Deriva di zero ±0.01% F.S. per °C
- Lunghezza di riferimento 500 mm
- Centralina di acquisizione automatica dati Geotechnical Instrument.
 - Risoluzione 16 bit (0.0001 sen α)
 - Campo di misura ±0.50 m
- Cavi multipolari inestensibili di lunghezza di 35 e 80 m con tacche di misura ogni 50 cm

IGETECMA s.n.c.

Rapporto di prova n. 364/16

Committente: Confraternita di Misericordia di Pontassieve Località: Cimitero di San Martino a Quona - Pontassieve

Tubo: 13 Coordinate: N 43.781989° E 11.426906°

Data lettura di zero: 27/04/2001 Quota testa tubo: 185.0

Correzione azimutale: N 216°E Tipo Sonda: Segea MK4 - 10000 sen(A)

Dati di campagna - valori di sen(alfa)

Lettura n. 8 del 15/12/2016

Lottura II.		13/12/2010			
Misura n°	Prof. da a (m)	LatoA	LatoB	LatoC	LateD
	(,,,	sen(alfa)	sen(alfa)	sen(alfa)	LatoD sen(alfa)
1	0.0-0.5	-0.01170	0.01650	0.00240	-0.00350
2	0.5-1.0	-0.01550	0.01490	0.00110	-0.00330
3	1.0-1.5	-0.01570	0.01520	-0.00050	-0.00020
4	1.5-2.0	-0.01570	0.01560	-0.00140	0.00040
5	2.0-2.5	-0.01540	0.01490	-0.00180	0.00120
6	2.5-3.0	-0.01490	0.01440	-0.00230	0.00120
7	3.0-3.5	-0.01310	0.01310	-0.00340	0.00180
8	3.5-4.0	-0.01400	0.01330	-0.00360	0.00270
9	4.0-4.5	-0.01350	0.01290	-0.00350	0.00270
10	4.5-5.0	-0.01350	0.01300	-0.00380	0.00200
11	5.0-5.5	-0.01360	0.01310	-0.00400	0.00290
12	5.5-6.0	-0.01350	0.01290	-0.00370	0.00310
13	6.0-6.5	-0.01060	0.01010	-0.00110	0.00040
14	6.5-7.0	-0.00940	0.00910	-0.00210	0.00150
15	7.0-7.5	-0.00970	0.00940	-0.00190	0.00150
16	7.5-8.0	-0.00930	0.00910	-0.00250	0.00130
17	8.0-8.5	-0.00570	0.00540	-0.00540	0.00500
18	8.5-9.0	0.00130	-0.00160	-0.01190	0.01160
19	9.0-9.5	0.00530	-0.00550	-0.01700	0.01670
20	9.5-10.0	-0.00110	0.00100	-0.01410	0.01380
21	10.0-10.5	-0.00850	0.00830	-0.01000	0.00950
22	10.5-11.0	-0.01360	0.01320	-0.00780	0.00720
23	11.0-11.5	-0.01480	0.01440	-0.00750	0.00680
24	11.5-12.0	-0.01440	0.01410	-0.00810	0.00760
25	12.0-12.5	-0.01710	0.01630	-0.00370	0.00360
26	12.5-13.0	-0.01520	0.01470	-0.00220	0.00150
27	13.0-13.5	-0.01650	0.01610	-0.00250	0.00210
28	13.5-14.0	-0.02010	0.02060	-0.00430	0.00430
29	14.0-14.5	-0.02450	0.02480	-0.00670	0.00600
				3130010	0.0000
					

Rapporto di prova n. 364/16

Committente:

Confraternita di Misericordia di Pontassieve Cimitero di San Martino a Quona - Pontassieve

Tubo:

Località:

13

Coordinate:

N 43.781989° E 11.426906°

Data lettura di zero:

27/04/2001

Quota testa tubo:

185.0

Correzione azimutale:

N 216°E

Tipo Sonda:

Segea MK4 - 10000 sen(A)

Elaborazione in differenziale - Calcolo vettoriale dal basso

Lettura n. 8 del 15/12/2016

Lellura II.	o uei	13/12/2010			
		Spostamento	Azimut	Spostamento	Azimut
Misura n°	Prof. da a (m)		Differenziale	Risultante	Risultante
		(per punti - mm)		(sommatoria - mm)	
1	0.0-0.5	3.78	306°	23.15	208°
2	0.5-1.0	2.52	320°	23.97	199°
3	1.0-1.5	1.74	336°	25.36	194°
4	1.5-2.0	1.61	342°	26.76	192°
5	2.0-2.5	1.32	345°	28.17	190°
6	2.5-3.0	1.01	350°	29.37	189°
7	3.0-3.5	0.94	338°	30.33	188°
8	3.5-4.0	0.59	360°	31.15	187°
9	4.0-4.5	0.44	358°	31.73	187°
10	4.5-5.0	0.38	359°	32.17	187°
11	5.0-5.5	0.38	359°	32.54	187°
12	5.5-6.0	0.47	4°	32.91	187°
13	6.0-6.5	0.69	347°	33.39	187°
14	6.5-7.0	0.82	344°	34.03	186°
15	7.0-7.5	0.90	348°	34.79	186°
16	7.5-8.0	0.21	320°	35.65	185°
17	8.0-8.5	2.54	180°	35.80	185°
18	8.5-9.0	7.73	178°	33.27	186°
19	9.0-9.5	11.08	181°	25.62	188°
20	9.5-10.0	7.72	182°	14.67	193°
21	10.0-10.5	3.69	185°	7.24	205°
22	10.5-11.0	1.01	200°	3.95	223°
23	11.0-11.5	0.33	249°	3.04	230°
24	11.5-12.0	0.20	223°	2.73	228°
25	12.0-12.5	0.47	248°	2.53	228°
26	12.5-13.0	0.87	228°	2.09	224°
27	13.0-13.5	0.96	231°	1.23	221°
28	13.5-14.0	0.28	216°	0.34	189°
29	14.0-14.5	0.15	136°	0.15	136°

Rapporto di prova n. 364/16

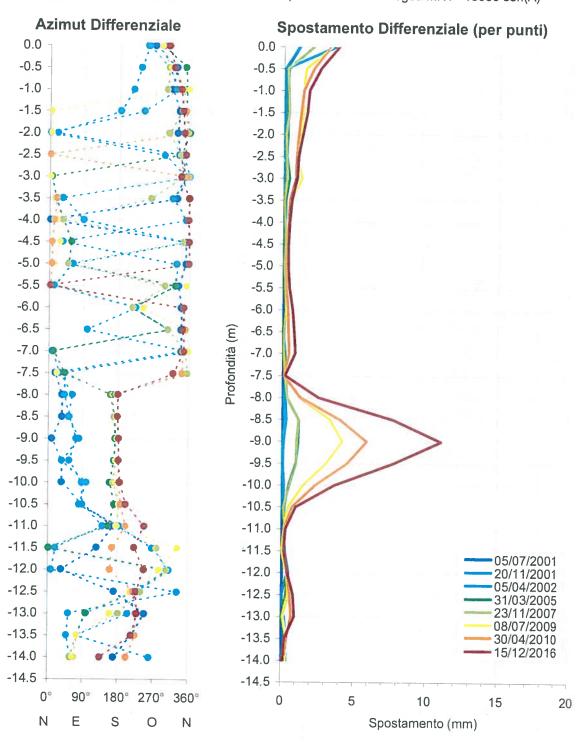
Committente: Località:

Confraternita di Misericordia di Pontassieve Cimitero di San Martino a Quona - Pontassieve

Tubo:

Data lettura di zero: Correzione azimutale: 13

27/04/2001


N 216°E

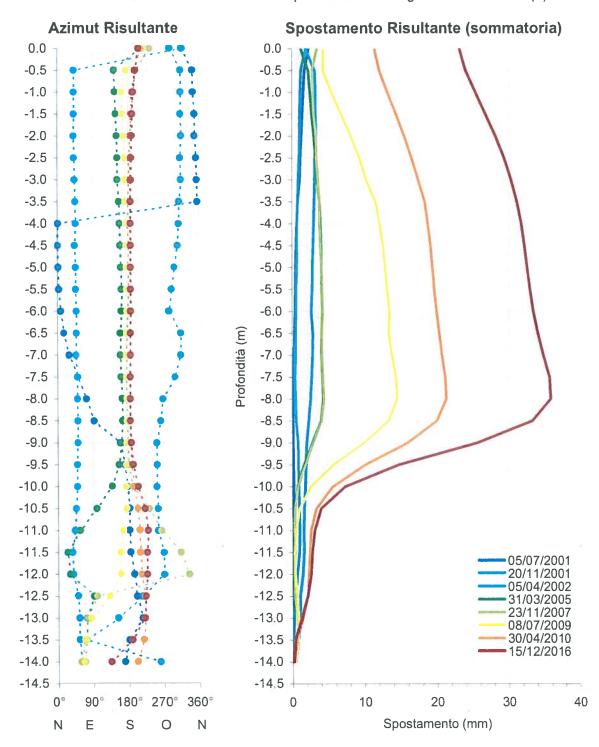
Coordinate:

N 43.781989° E 11.426906°

Quota testa tubo: 185.0

Tipo Sonda: Segea MK4 - 10000 sen(A)

Igetecma s.n.c. - Via delle Pratella n. 18/20 - 50056 Montelupo F.no - tel. 05711738160 fax 05711979995 P.I. 04576560488 - C.C.I.A.A. FI 462056 - Iscr. Trib. FI 69963 - www.igetecma.eu


Rapporto di prova n. 364/16

Committente: Confraternita di Misericordia di Pontassieve Località: Cimitero di San Martino a Quona - Pontassieve

Tubo: I3 Coordinate: N 43.781989° E 11.426906°

Data lettura di zero: 27/04/2001 Quota testa tubo: 185.0

Correzione azimutale: N 216°E Tipo Sonda: Segea MK4 - 10000 sen(A)

Rapporto di prova n.

Committente:

Località:

Confraternita di Misericordia di Pontassieve Cimitero di San Martino a Quona - Pontassieve

Tubo:

13

Coordinate:

N 43.781989° E 11.426906°

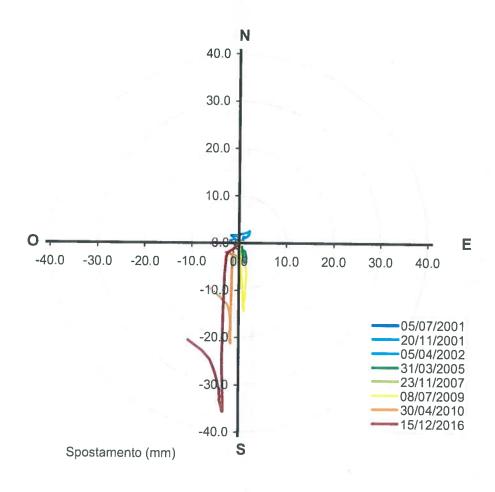
Data lettura di zero:

27/04/2001

364/16

Quota testa tubo:

185.0


Correzione azimutale:

N 216°E

Tipo Sonda:

Segea MK4 - 10000 sen(A)

Direzione (proiezione zenitale)

Allegato B5

Progetto di bonifica del versante per l'ampliamento del cimitero di S. Martino a Quona – I° e II° stralcio (Ing. D.Lapi, marzo 2008)

relazione tecnica generale
stralci significativi delle tavole progettuali 2, 2a, e 3

STUDIO TECNICO Dott. Ing. Daniele LAPI - IDRAULICA - STRUTTURE - GEOTECNICA

COMUNE DI PONTASSIEVE loc. San Martino a Quona

PROGETTO DI BONIFICA DEL VERSANTE PER L'AMPLIAMENTO DEL CIMITERO DI SAN MARTINO A QUONA I- II STRALCIO

RELAZIONE TECNICA GENERALE

Richiedente: Confraternita di Misericordia di Pontassieve

Marzo 2008

Il Direttore dei Lavori

Il progettista

Progetto di bonifica del versante per l'ampliamento del cimitero di San Martino a Quona

Sommario

<u>50mmano</u>	
GENERALITA'	
DESCRIZIONE	•••••••
Normativa italiana - Leggi e decreti	
Relazione geotecnica	
MATERIALI IMPIEGATI	
descrizione delle opere di contenimento	
paratie	7
armature	7
<u>tiranti</u>	7
Calcoli e verifiche	7
Analisi dei carichi	8
Sollecitazioni massime	9
verifiche dei tiranti	9
Allegati di calcolo	12
Metodo di analisi	13
PARATIA TIPO 3	16

Scopo del presente studio è la progettazione delle opere di bonifica del versante interessato dai lavori di ampliamento del cimitero della Misericordia di Pontassieve in località San Martino a Quona. Il progetto prevede l'espansione del cimitero mediante la realizzazione di due complessi di loculi, uno disposto lungo lo sviluppo di Via San Martino a Quona e l'altro al margine di monte dell'area in oggetto, e di un nuovo campo di inumazione.

DESCRIZIONE

Come si evince dalla relazione geologica redatta dal Dott. Geol. Enrico Focardi, l'area in esame è interessata da vari anni da fenomeni di dissesto, imputabili ad un lento movimento della coltre superficiale conseguente ad una eccessiva imbibizione dei materiali, causata dal divagare incontrollato dell'acqua di falda. L'interruzione di un piccolo impluvio che agiva da dreno per l'area oggetto di studio, ha provocato il diffondersi dell'acqua nelle aree adiacenti dando luogo al processo di ammollimento e mobilizzazione della copertura.

Dalle analisi svolte è stato verificato che l'oscillazione della falda può indurre fenomeni di instabilità del versante pertanto, con la presente si individuano anche gli interventi previsti per l'abbattimento ed il controllo della stessa.

Gli interventi di progetto sono stati suddivisi in due stralci funzionali così suddivisi:

INTERVENTI I STRALCIO

Si prevede la realizzazione delle seguenti opere di drenaggio:

- ➤ Cinque *pozzi non strutturali drenanti* nel tratto di monte del nuovo campo di inumazione che raccoglieranno le acque fino ad una profondità di circa 7.0 mt dal piano campagna. I pozzi saranno in comunicazione tra loro e riverseranno le acque drenate in un avanpozzo posto a valle del campo di inumazione.
- > *Trincee drenanti* che si svilupperanno al di sotto del nuovo campo di inumazione per consentire l'abbattimento della falda al di sotto della quota di inumazione.
- > Zanelle e fossette per la regimazione delle acque meteoriche, anche nella porzione oggetto degli interventi del II stralcio.

INTERVENTI II STRALCIO

Per la realizzazione del complesso di loculi sul margine di monte dell'area, si prevede la realizzazione di sbancamenti di terreno compresi tra 5.0 e 7.8 mt circa. A tal fine si rende necessaria la realizzazione di una *paratia di pali in c.a. intirantata*. La paratia presenta uno sviluppo in pianta di circa 110 mt e sarà realizzata mediante pali d. 800 mm differenziati secondo tre distinte tipologie, come approfondito nei paragrafi successivi. I pali saranno rilegati in testa da un cordolo in c.a e saranno dotati di tiranti definitivi. La paratia sarà dotata inoltre di un drenaggio delle acque ipodermiche a tergo del cordolo in c.a. e di una zanella riportata sulla testa del cordolo per la raccolta delle acque meteoriche, che si sostituirà alla fossetta già realizzata nel I stralcio. Inoltre, per diminuire le spinte neutre indotte dalla falda, sul fronte della paratia saranno disposti due ordini di canne drenanti della lunghezza di 10 mt disposte a quinconce.

	Paratia tipo	1
L		9.5 mt

Pali 800	23
Lunghezza	27.2 mt
globale	
Tiranti definitivi	7

Paratia tipo 2			
L	11.0 mt		
Pali 800	29		
Lunghezza	36.6 mt		
globale			
Tiranti definitivi	9		

Paratia tipo 3				
L	15.0 mt			
Pali 800	48			
Lunghezza globale	48.0 mt			
Tiranti definitivi	16			

I citati stralci risultano essere funzionali in se stessi e possono essere realizzati in tempi diversi, in quanto l'esecuzione del I stralcio non influenza la stabilità delle aree relative al secondo, anzi ne produce comunque una riduzione del rischio poiché sono previsti gli interventi di regimazione delle acque meteoriche ed ipodermiche.

Ovviamente la bonifica totale di tutta l'area oggetto di studio avverrà solo al completamento di entrambi gli stralci funzionali.

NORMATIVA ITALIANA - LEGGI E DECRETI

- DM 11 marzo 1988. "Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione"
- Istruzioni relative alle "Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione ed il collaudo delle opere di sostegno delle terre e delle opere di fondazione" Circ.Dir.Centr.Tecn. N° 97/81
- Circolare ministeriale Ministero LL.PP. n°30483 del 24 settembre 1988
- Circolare ministeriale ministero LL.PP.n°218/24/3 del 9 gennaio 1996
- UNI ENV 1997-1:1997 "Progettazione Geotecnica Parte 1"
- UNI-ENV 1998-2:1998 "Indicazioni progettuali per la resistenza sismica delle strutture" Parte 2 "Ponti".
- UNI-ENV 1998-5:1998 "Indicazioni progettuali per la resistenza sismica delle strutture" Parte 5 "Fondazioni, strutture di contenimento ed aspetti geotecnica".
- ENV 1993-5:1998 "Design of steel structures" Parte 5 "Piling"
- Legge 1086 del 5/11/1971 "Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso, ed a struttura metallica"
- D.M. 14 febbraio 1992 "Norme tecniche per l'esecuzione delle opere in cemento armato normale e precompresso e per le strutture metalliche".
- DM 16 gennaio 1996 "Norme tecniche per le costruzioni in zone sismiche"
- D.M. 09/01/96 "Norme tecniche per l'esecuzione di opere in cemento armato normale e precompresso e per le strutture metalliche".
- D.M. 16/01/96 "Norme tecniche relative ai criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi".
- D.M. 14/09/2005 "Norme tecniche per le costruzioni".
- Circolare 4/7/96 Circolare del Servizio tecnico centrale del Ministero LL. PP. n. 156AA.GG./STC Istruzioni per l'applicazione delle "Norme tecniche relative ai criteri generali per la verifica di sicurezza delle costruzioni e carichi e sovraccarichi" di cui al DM 16/1/96
- Circolare 15/10/96 Circolare del Servizio tecnico centrale del Ministero LL.PP. n.
 252 AA.GG./STC: Istruzioni per l'applicazione delle "Norme tecniche per l'esecuzione di opere in cemento armato normale e precompresso e per le strutture metalliche." di cui al DM 9/1/96

Raccomandazioni italiane

- AICAP (1993) "Ancoraggi nei terreni e nelle rocce". Raccomandazioni

RELAZIONE GEOTECNICA

Sulla base delle indagini geologiche si può ricostruire il seguente schema stratigrafico:

- > Suolo e/o riporti per uno spessore di circa 1.0-1.5 mt;
- > Argille e limi argillosi, molto alterati di media consistenza, con spessore da 3 a 6 mt;

- Limi argillosi da consistenti a molto consistenti (Nspt=22) con spessore da 3 a 6 mt;
- > Substrato costituito da argilliti e marne, di consistenza definibile "dura" (Nspt a rifiuto).

Per quanto riguarda i parametri geotecnici, ai fini della modellazione degli elementi strutturali, si è fatto riferimento, in accordo col geologo, alla seguente situazione:

orizzonte campale: peso di volume $\gamma = 1.6 - 1.9 \text{ t/m}^3$

angolo di attrito $\phi' = 18^{\circ}$

coesione $c' = 0.02 \text{ kg/cm}^2$

spessore sp = 5.5 mt

argille consistenti: peso di volume $\gamma = 1.6 - 1.9 \text{ t/m}^3$

angolo di attrito $\phi' = 20^{\circ}$

coesione $c' = 0.15 \text{ kg/cm}^2$

spessore sp = 4.5 mt

argilliti dure: peso di volume $\gamma = 1.8 - 2.0 \text{ t/m}^3$

angolo di attrito $\phi' = 23^{\circ}$

coesione $c' = 0.3 \text{ kg/cm}^2$

MATERIALI IMPIEGATI

1) Conglomerati cementizi.

Conglomerato cementizio per fondazioni.

Il conglomerato cementizio per fondazioni e' usato per i getti dei cordoli; deve essere confezionato secondo le disposizioni di legge vigenti e deve avere resistenza caratteristica a 28 giorni pari a R'ck 300 kg/cm².

Iniezioni pali.

I pali una volta trivellati dovranno essere gettati con malta cementizia e sabbia fluidificata, a pressione iniettando almeno 1.2 volte il volume trivellato, la resistenza caratteristica dovrà essere non inferiore a 300 kg/cm2.

2) Armature per cemento armato.

Le armature per il cemento armato devono essere di acciaio ad aderenza migliorata FeB 44 K controllato in stabilimento e devono essere conformi alle normative vigenti.

La massima tensione di trazione e' assunta pari a σ amm =2.600 kg/cm2.

- 3) Tiranti tipo tensacciai definitivi, in acciaio armonico ad alta resistenza composti da trefoli di diametro pari a 0.6" ed aventi le seguenti caratteristiche meccaniche (dati riferiti al singolo trefolo):
 - o Diametro nominale 15.20 mm;
 - o Sezione nominale 140 mm²;
 - o Massa nominale 1.1 kg/m;
 - o Rilassamento dopo 1000 ore al 70% del carico di rottura ≤ 2.5 %;
 - o Tensione caratteristica all'1% di deformazione $f_{p(1)k} = 1670 \text{ MPa}$;

- Tensione caratteristica di rottura f_{ptk} = 1860 MPa;
- o Modulo elastico E = 195 ± 10 GPa.
- 5) Boiacca di cemento con fluidificanti r45 per iniezioni.

DESCRIZIONE DELLE OPERE DI CONTENIMENTO

PARATIE

Come già visto in precedenza, per la messa in sicurezza del movimento franoso saranno realizzati due ordini di paratie costituite da:

- PARATIA tipo 1 23 pali Φ800 interasse 1.2 mt, Hdiaframma = 9.5 mt, 7 tiranti a 4 trefoli L = 25.0 mt (13.0 mt + 12.0 mt di bulbo attivo) con inclinazione pari a 30° e interasse pari a 4.0 mt;
- PARATIA tipo 2 29 pali Φ800 interasse 1.2 mt, Hdiaframma = 11.0 mt, 9 tiranti a 4 trefoli L = 25.0 mt (13.0 mt + 12.0 mt di bulbo attivo) con inclinazione pari a 30° e interasse pari a 4.0 mt;
- PARATIA tipo 3 48 pali Φ800 interasse 1.0 mt, Hdiaframma = 15.0 mt, 16 tiranti a 4 trefoli L = 25.0 mt (13.0 mt + 12.0 mt di bulbo attivo) con inclinazione pari a 30° e interasse pari a 3.0 mt.

ARMATURE

Per quanto riguarda l'armatura dei pali si prevedono:

- PARATIA tipo 1 n° 16Φ16, racchiusi da staffe elicoidali Φ10 passo 25 cm.
- PARATIA tipo 2 n° 20Φ16, racchiusi da staffe elicoidali Φ10 passo 20 cm.
- ➤ PARATIA tipo 3 n° 20Φ20, racchiusi da staffe elicoidali Φ10 passo 12.5 cm.

Le teste dei pali saranno rilegate tra loro mediante cordoli in c.a. 160×70 cm, armati con $28\Phi16$ (9+9 orizzontali e 5+5 verticali). Sono previsti staffoni $\Phi16/25$ ". In prossimità dei tiranti saranno previste delle armature di rinforzo, come da elaborati grafici.

TIRANTI

Saranno realizzati tiranti definitivi a 4 trefoli di lunghezza complessiva pari a 25 mt (13 mt + 12.0 mt di bulbo attivo). In direzione orizzontale i tiranti saranno posti ad un interasse pari a 4.0 mt e inclinazione pari a 30° (PARATIA tipo 1 e 2), interasse pari a 3.0 mt e inclinazione pari a 30° (PARATIA tipo 3). Per ciascun tirante si prevede una tesatura pari a 20 tons.

CALCOLI E VERIFICHE

La verifica delle opere strutturali e' stata condotta ipotizzando tre valori del fronte di scavo a cui corrispondono tre tipologie distinte di paratia:

- Paratia tipo 1 altezza fuori terra pari a 5.0 mt;
- Paratia tipo 2 altezza fuori terra pari a 6.0 mt;

Paratia tipo 3 – altezza fuori terra pari a 7.8 mt.

ANALISI DEI CARICHI

Oltre al peso proprio delle strutture si considera:

a) Spinta delle terre

Si fa riferimento ai parametri riportati nella relazione geologico-tecnica. Si considera la variazione della pressione delle terre dovuta al variare delle caratteristiche geotecniche degli strati di terreno interessati.

b) Sovraccarico a monte della paratia

Non essendo possibile schematizzare il profilo di monte con un angolo maggiore dell'angolo di attrito dello strato superficiale, si tiene conto del maggior quantitativo di terreno presente a monte inserendo un carico permanente pari a 1000 kg/mq.

c) Sovraccarico a valle della paratia

La presenza dei loculi immediatamente a valle della paratia è stata schematizzata mediante l'applicazione di un sovraccarico di 7000 kg/m².

d) Azione della falda

Per quanto riguarda la presenza della falda si è invece assunta la presenza d'acqua alla profondità di 3.0 mt nel tratto a monte della paratia e alla quota dello scavo nel tratto di valle.

e) Azione sismica

Il comune di Pontassieve, secondo la zonizzazione sismica è classificato in zona 3S (S=9), per cui ai fini dell'analisi sismica si utilizza un coefficiente di intensità sismica pari a 0.07.

Tali carichi sono stati cumulati secondo l'espressione agli stati limite ultimi, in maniera tale da risultare più sfavorevoli ai fini delle singole verifiche, tenendo conto della ridotta probabilità di intervento simultaneo di tutte le azioni con i rispettivi valori più sfavorevoli. Si adotteranno le combinazioni espresse simbolicamente come segue:

$$Fd = \gamma_g \cdot G_k + \gamma_q \cdot Q_{1k} + \sum_{i=2}^n \gamma_q \cdot (\psi_{0i} \cdot Q_{ik})$$

dove

G_k rappresenta il valore caratteristico delle azioni permanenti (peso proprio, spinta delle terre e sovraccarico a valle della paratia);

Q_{1k} rappresenta il valore caratteristico dell'azione di base di ogni combinazione;

Qik rappresentano i valori caratteristici delle azioni variabili tra loro indipendenti;

 ψ_{0i} rappresentano i coefficienti di combinazione allo stato limite ultimo, da determinarsi sulla base di considerazioni statistiche, per tenere conto della ridotta probabilità di concomitanza delle azioni variabili con i rispettivi valori caratteristici.

$$\gamma_g = 1.4$$

$$\gamma_q = 1.5$$

Nella espressione di F_d ciascuna azione variabile deve essere di volta in volta assunta come azione di base della combinazione.

Nel caso in esame, si è fatto riferimento alle combinazioni dei vari carichi permanenti in gioco sia in fase statica che in fase dinamica.

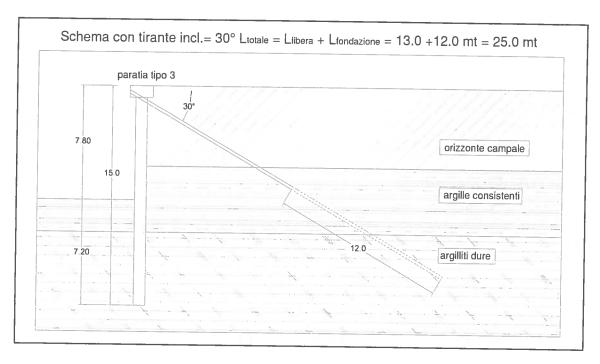
SOLLECITAZIONI MASSIME

Si riportano di seguito le sollecitazioni massime ottenute per metro di paratia e il tiro massimo sui tiranti secondo le due combinazioni di carico eseguite, ottenuti mediante il software di calcolo agli elementi finiti **PAC 9.0** prodotto dalla *Aztec Informatica*.

o PARATIA tipo 1

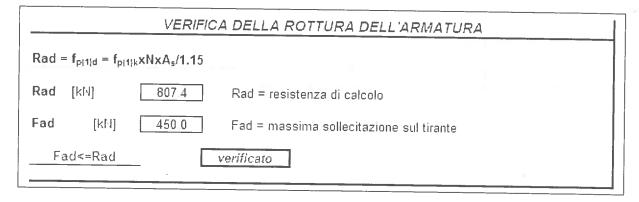
SOLLECITAZIONI MASSIME PER METRO DI PARATIA	M (kgm)	T (kg)	Tiro max sul tirante (kg)
STATICA	-14218	7152	30798
DINAMICA	-14607	7667	35156

o PARATIA tipo 2


SOLLECITAZIONI MASSIME PER METRO DI PARATIA	M (kgm)	T (kg)	Tiro max sul tirante (kg)	
STATICA	-17335	9085	36404	
DINAMICA	-17667	9836	41921	

o PARATIA tipo 3

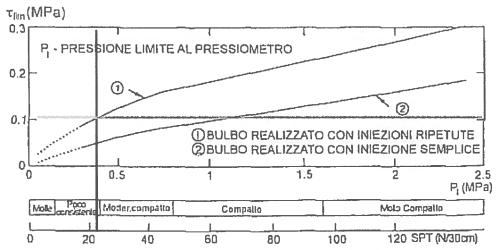
SOLLECITAZIONI MASSIME PER METRO DI PARATIA	M (kgm)	T (kg)	Tiro max sul tirante (kg)
STATICA	-30732	16691	38327
DINAMICA	-31753	17957	44780


VERIFICHE DEI TIRANTI

Si esegue la verifica del tirante più sollecitato, ovvero quello appartenente alla paratia tipo 3, secondo lo schema riportato qui di seguito:

Il tratto attivo viene ammorsato sia nelle argille consistenti che nelle argilliti dure per una lunghezza pari a Lf = 12.0 mt che dovrà sopportare un carico massimo approssimato a 46 tons. Per quanto riguarda la verifica allo sfilamento, saranno assunti i valori delle tabelle relativi a "limi e argille", considerando, in favore di sicurezza, che tutto l'ammorsamento avvenga nelle argille consistenti caratterizzate da un valore di Nspt = 22.

			CARATTERISTICHE TIRANTE
N		4	N = numero trefoli
As	[prmrq]	139	A _s = area del singolo trefolo
Lf	[mt]	12	L _f = lunghezza fondazione (bulbo attivo)
D	[mt]	0.2	D = diametro del foro di perforazione
int	[mt]	3	int = interasse tiranti
incl	[*]	30	incl = inclinazione del tirante rispetto all'orizzontale
E	[M/mmq]	200000	E = modulo di Young acciaio tiranti
$f_{p 1 k}$	[N/mmq]	1670	$f_{c(1)k}$ = tensione caratteristica all'1% di deformazione totale
f _{ptk}	[N/mmq]	1860	f _{cts} = tensione caratteristica di rottura


Per la verifica a sfilamento si accosta il comportamento del terreno di fondazione del tirante a quello di una marna calcarea, secondo i valori proposti dalle seguenti tabelle.

TERRENO	iniezione IRS	iniezione IGU
ghiaia	1.8	1.3-1.4
ghiaia sabbiosa	1.6-1.8	1.2-1.4
sabbia ghiaiosa	1.5-1.6	1.2-1.3
sabbia grossolana	1.4-1.5	1.1-1.2
sabbia media	1.4-1.5	1.1-1.2
sabbia fine	1.4-1.5	1.1-1.2
sabbia limosa	1.4-1.5	1.1-1.2
limo	1.4-1.6	1.1-1.2
argilla	1.8-2.0	1,2
marna	1.8	1.1-1.2
mama-calcare	1.8	1.1-1.2
roccia alterata	1.2	1.1

IRS: iniezione ripetuta e selettiva; IGU: iniezione globale e unica

Tab.1 – Valutazione del parametro α

Per valutare il valore dell'aderenza terreno-fondazione si è fatto riferimento alla tabella seguente che fornisce il valore di τ_{lim} in funzione del valore Nspt. In favore di sicurezza si è assunto il valore di Nspt = 22, rappresentativo delle argille consistenti.

Tab.2 - Diagramma per il calcolo del valore di τ_{lim} per arenarie, marne e marne calcaree

tipo di terreno tipo di iniezione tipo di tiranti D _s = α x D	argille e limi ripetuta definitivi
$D_s = \alpha \times D$	
α 1.8 Ds [mt] 0.36 Tlim [kPa] 100 Nlim,sf [kN] 1357 β 1.15	c. = parametro dipendente dal terreno e dal tipo di iniezione Ds = diametro effettivo del bulbo di ancoraggio im = aderenza limite fondazione-terreno Nomeri = tiro massimo sopportabile dal bulbo di ancoraggio is = coefficiente di caduta di tensione FS = fattore di sicurezza

VERIFICA ADERENZA ACCIAIO-MALTA DI INIEZIONE

 $L_{f1,min} = F_{ad} I (\pi \times d \times \tau_{c0} \times \omega)$ Fad [kN] 450.0 Fad = massima sollecitazione sul tirante 0.053 [m]d = somma dei diametri dei trefoli disposti nel tirante R_{bk} [MPa] 30 Red = resistenza caratteristica della malta τ_{c0} [kPa] 600 T50 = resistenza tangenziale limite della malta 😅 = coefficiente correttivo dipendente dal numero di trefoli 2 0.775 Lff,min [m] 5.79 $L_{\rm fi,min}$ = lunghezza necessaria a garantire l'aderenza malta-armatura Lfi.min <= Lf verificato

ALLEGATI DI CALCOLO

Si riportano di seguito gli output di calcolo relativi alla paratia maggiormente sollecitata, ovvero la **paratia tipo 3** ottenuti mediante il software di calcolo **PAC 9.0** prodotto dalla *Aztec Informatica*.

METODO DI ANALISI

Calcolo della spinte

Metodo di Culmann (metodo del cuneo di tentativo)

Il metodo di Culmann adotta le stesse ipotesi di base del metodo di Coulomb: cuneo di spinta a monte della parete che si muove rigidamente lungo una superficie di rottura rettilinea o spezzata (nel caso di terreno stratificato).

La differenza sostanziale è che mentre Coulomb considera un terrapieno con superficie a pendenza costante e carico uniformemente distribuito (il che permette di ottenere una espressione in forma chiusa per il valore della spinta) il metodo di Culmann consente di analizzare situazioni con profilo di forma generica e carichi sia concentrati che distribuiti comunque disposti. Inoltre, rispetto al metodo di Coulomb, risulta più immediato e lineare tener conto della coesione del masso spingente. Il metodo di Culmann, nato come metodo essenzialmente grafico, si è evoluto per essere trattato mediante analisi numerica (noto in questa forma come metodo del cuneo di tentativo).

I passi del procedimento risolutivo sono i seguenti:

- si impone una superficie di rottura (angolo di inclinazione ρ rispetto all'orizzontale) e si considera il cuneo di spinta delimitato dalla superficie di rottura stessa, dalla parete su cui si calcola la spinta e dal profilo del terreno;
- si valutano tutte le forze agenti sul cuneo di spinta e cioè peso proprio (W), carichi sul terrapieno, resistenza per attrito e per coesione lungo la superficie di rottura $(R \ e \ C)$ e resistenza per coesione lungo la parete (A);
- dalle equazioni di equilibrio si ricava il valore della spinta S sulla parete.

Questo processo viene iterato fino a trovare l'angolo di rottura per cui la spinta risulta massima nel caso di spinta attiva e minima nel caso di spinta passiva.

Le pressioni sulla parete di spinta si ricavano derivando l'espressione della spinta S rispetto all'ordinata z. Noto il diagramma delle pressioni si ricava il punto di applicazione della spinta.

Spinta in presenza di falda

Nel caso in cui a monte della parete sia presente la falda il diagramma delle pressioni risulta modificato a causa della sottospinta che l'acqua esercita sul terreno. Il peso di volume del terreno al di sopra della linea di falda non subisce variazioni. Viceversa al di sotto del livello di falda va considerato il peso di volume efficace

$$\gamma' = \gamma_{sat} - \gamma_{w}$$

dove γ_{sat} è il peso di volume saturo del terreno (dipendente dall'indice dei pori) e γ_w è il peso specifico dell'acqua. Quindi il diagramma delle pressioni al di sotto della linea di falda ha una pendenza minore. Al diagramma così ottenuto va sommato il diagramma triangolare legato alla pressione esercitata dall'acqua.

Il regime di filtrazione della falda può essere idrostatico o idrodinamico.

Nell'ipotesi di regime idrostatico sia la falda di monte che di valle viene considerata statica, la pressione in un punto a quota h al di sotto della linea freatica sarà dunque pari a:

 $\gamma_w \times h$

Spinta in presenza di sisma

Per tenere conto dell'incremento di spinta dovuta al sisma si fa riferimento al metodo di **Mononobe-Okabe** (cui fa riferimento la Normativa Italiana).

Il metodo di Mononobe-Okabe considera nell'equilibrio del cuneo spingente la forza di inerzia dovuta al sisma. Indicando con W il peso del cuneo e con C il coefficiente di intensità sismica la forza di inerzia valutata come

 $F_i = W^*C$

Indicando con S la spinta calcolata in condizioni statiche e con S_s la spinta totale in condizioni sismiche l'incremento di spinta è ottenuto come

 $DS = S - S_s$

L'incremento di spinta viene applicato a 2/3 dell'altezza della parete stessa(diagramma triangolare con vertice in basso).

Analisi ad elementi finiti

La paratia è considerata come una struttura a prevalente sviluppo lineare (si fa riferimento ad un metro di larghezza) con comportamento a trave. Come caratteristiche geometriche della sezione si assume il momento d'inerzia I e l'area A per metro lineare di larghezza della paratia. Il modulo elastico è quello del materiale utilizzato per la paratia.

La parte fuori terra della paratia è suddivisa in elementi di lunghezza pari a circa 5 centimetri e più o meno costante per tutti gli elementi. La suddivisione è suggerita anche dalla eventuale presenza di tiranti, carichi e vincoli. Infatti questi elementi devono capitare in corrispondenza di un nodo. Nel caso di tirante è inserito un ulteriore elemento atto a schematizzarlo. Detta L la lunghezza libera del tirante, A_i l'area di armatura nel tirante ed E_s il modulo elastico dell'acciaio è inserito un elemento di lunghezza pari ad L, area A_i , inclinazione pari a quella del tirante e modulo elastico E_s . La parte interrata della paratia è suddivisa in elementi di lunghezza, come visto sopra, pari a circa 5 centimetri.

I carichi agenti possono essere di tipo distribuito (spinta della terra, diagramma aggiuntivo di carico, spinta della falda, diagramma di spinta sismica) oppure concentrati. I carichi distribuiti sono riportati sempre come carichi concentrati nei nodi (sotto forma di reazioni di incastro perfetto cambiate di segno).

Schematizzazione del terreno

La modellazione del terreno si rifà al classico schema di Winkler. Esso è visto come un letto di molle indipendenti fra di loro reagenti solo a sforzo assiale di compressione. La rigidezza della singola molla è legata alla costante di sottofondo orizzontale del terreno (costante di Winkler). La costante di sottofondo, k, è definita come la pressione unitaria che occorre applicare per ottenere uno spostamento unitario. Dimensionalmente è espressa quindi come rapporto fra una pressione ed uno spostamento al cubo $[F/L^3]$. È evidente che i risultati sono tanto migliori quanto più è elevato il numero delle molle che schematizzano il terreno. Se (m è l'interasse fra le molle (in cm) e b è la larghezza della paratia in direzione longitudinale (b=100 cm) occorre ricavare l'area equivalente, A_m , della molla (a cui si assegna una lunghezza pari a 100 cm). Indicato con E_m il modulo elastico del materiale costituente la paratia (in Kg/cm^2), l'equivalenza, in termini di rigidezza, si esprime come

$$A_m$$
=10000 x $\xrightarrow{\qquad \qquad k \Delta_m \qquad \qquad }$ E_m

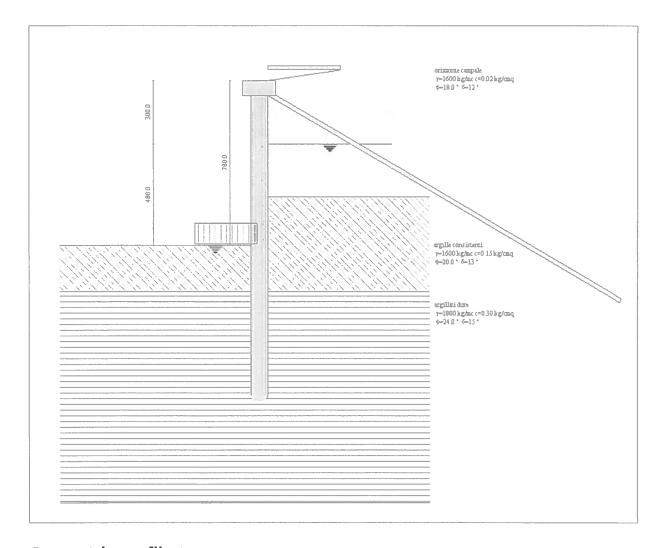
Per le molle di estremità, in corrispondenza della linea di fondo scavo ed in corrispondenza dell'estremità inferiore della paratia, si assume una area equivalente dimezzata. Inoltre, tutte le molle hanno, ovviamente, rigidezza flessionale e tagliante nulla e sono vincolate all'estremità alla traslazione. Quindi la matrice di rigidezza di tutto il sistema paratia-terreno sarà data dall'assemblaggio delle matrici di rigidezza degli elementi della paratia (elementi a rigidezza flessionale, tagliante ed assiale), delle matrici di rigidezza dei tiranti (solo rigidezza assiale) e delle molle (rigidezza assiale).

Modalità di analisi e comportamento elasto-plastico del terreno

A questo punto vediamo come è effettuata l'analisi. Un tipo di analisi molto semplice e veloce sarebbe l'analisi elastica (peraltro disponibile nel programma PAC). Ma si intuisce che considerare il terreno con un comportamento infinitamente elastico è una approssimazione alguanto grossolana. Occorre quindi introdurre qualche correttivo che meglio ci aiuti a modellare il terreno. Fra le varie soluzioni possibili una delle più praticabili e che fornisce risultati soddisfacenti è quella di considerare il terreno con comportamento elasto-plastico perfetto. Si assume cioè che la curva sforzi-deformazioni del terreno abbia andamento bilatero. Rimane da scegliere il criterio di plasticizzazione del terreno (molle). Si può fare riferimento ad un criterio di tipo cinematico: la resistenza della molla cresce con la deformazione fino a quando lo spostamento non raggiunge il valore X_{max}; una volta superato tale spostamento limite non si ha più incremento di resistenza all'aumentare degli spostamenti. Un altro criterio può essere di tipo statico: si assume che la molla abbia una resistenza crescente fino al raggiungimento di una pressione p_{max}. Tale pressione p_{max} può essere imposta pari al valore della pressione passiva in corrispondenza della quota della molla. D'altronde un ulteriore criterio si può ottenere dalla combinazione dei due descritti precedentemente: plasticizzazione o per raggiungimento dello spostamento limite o per raggiungimento della pressione passiva. Dal punto di vista strettamente numerico è chiaro che l'introduzione di criteri di plasticizzazione porta ad analisi di tipo non lineare (non linearità meccaniche). Questo comporta un aggravio computazionale non indifferente. L'entità di tale aggravio dipende poi dalla particolare tecnica adottata per la soluzione. Nel caso di analisi elastica lineare il problema si risolve immediatamente con la soluzione del sistema fondamentale (K matrice di rigidezza, u vettore degli spostamenti nodali, p vettore dei carichi nodali)

Un sistema non lineare, invece, deve essere risolto mediante un'analisi al passo per tener conto della plasticizzazione delle molle. Quindi si procede per passi di carico, a partire da un carico iniziale p0, fino a raggiungere il carico totale p. Ogni volta che si incrementa il carico si controllano eventuali plasticizzazioni delle molle. Se si hanno nuove plasticizzazioni la matrice globale andrà riassemblata escludendo il contributo delle molle plasticizzate. Il procedimento descritto se fosse applicato in questo modo sarebbe particolarmente gravoso (la fase di decomposizione della matrice di rigidezza è particolarmente onerosa). Si ricorre pertanto a soluzioni più sofisticate che escludono il riassemblaggio e la decomposizione della matrice, ma usano la matrice elastica iniziale (metodo di Riks).

Senza addentrarci troppo nei dettagli diremo che si tratta di un metodo di Newton-Raphson modificato e ottimizzato. L'analisi condotta secondo questa tecnica offre dei


Progetto di bonifica del versante per l'ampliamento del cimitero di San Martino a Quona

vantaggi immediati. Essa restituisce l'effettiva deformazione della paratia e le relative sollecitazioni; dà informazioni dettagliate circa la deformazione e la pressione sul terreno. Infatti la deformazione è direttamente leggibile, mentre la pressione sarà data dallo sforzo nella molla diviso per l'area di influenza della molla stessa. Sappiamo quindi quale è la zona di terreno effettivamente plasticizzato. Inoltre dalle deformazioni ci si può rendere conto di un possibile meccanismo di rottura del terreno.

PARATIA TIPO 3

Geometria paratia

Tipo di paratia	Paratia di pali
Altezza fuori terra [m]	7.80
Lunghezza paratia [m]	48.00
Profondità di infissione [m]	7.20
Altezza totale della paratia [m]	15.00
Numero di file di pali	1
Interasse fra i pali [m]	1.00
Diametro dei pali [cm]	80.00
Numero totale di pali	48
Numero di pali per metro lineare	1.00

Geometria profilo terreno

Simbologia adottata e sistema di riferimento

(Sistema di riferimento con origine in testa alla paratia, ascissa X positiva verso monte, ordinata Y positiva verso l'alto)

N numero ordine del punto

X ascissa del punto espressa in [m]

Y ordinata del punto espressa in [m]

A inclinazione del tratto espressa in [°]

Profilo di monte

N	X	Υ	Α
1	3.50	0.50	8.13
Profilo	di valle		
N	X	Υ	Α
1	-10.00	-7.80	0.00

Descrizione terreni

Simbologia adottata

- Nr. numero d'ordine dello strato a partire dalla sommità della paratia
- γ peso di volume del terreno espresso in [kg/mc]
- γ_w peso di volume saturo del terreno espresso [kg/mc]
- φ angolo d'attrito interno del terreno espresso in [°]
- δ angolo d'attrito terreno/paratia espresso in [°]
- c coesione del terreno espressa in [kg/cmq]

Nr	. Descrizione	γ	γw	ф	δ	C
1	orizzonte campale	1600	1900	18	12.00	0.020
2	argille consistenti	1600	1900	20	13.00	
3	argilliti dure	1800	2000	24	15.00	

Descrizione stratigrafia

Simbologia adottata

- Nr. numero d'ordine dello strato a partire dalla sommità della paratia
- sp spessore dello strato in corrispondenza dell'asse della paratia espresso in [m]
- kw costante di Winkler orizzontale espressa in Kg/cm²/cm
- α inclinazione dello strato espressa in GRADI(°)
- it indice terreno dello strato

Nr.	sp	α	kw	it
1	5.50	0.00	0.46	1
2	4.50	0.00	1.71	2
3	10.00	0.00	4.12	3

Falda

Profondità della falda a monte rispetto alla sommità della paratia [m] 3.00 Profondità della falda a valle rispetto alla sommità della paratia [m] 7.80 Regime delle pressioni neutre: idrodinamico

Caratteristiche materiali utilizzati

Calcestruzzo

Peso specifico 2500 kg/mc Resistenza caratteristica a compressione R_{bk} 300 kg/cmq Tensione ammissibile a compressione σ_c 98 kg/cmq Tensione tangenziale ammissibile τ_{c0} 6.0 kg/cmq Tensione tangenziale ammissibile τ_{c1} 18.3 kg/cmq

Acciaio

 $\begin{array}{lll} \text{Tipo} & & \text{FeB44K} \\ \text{Tensione ammissibile } \sigma_{\text{fa}} & & 2600 \text{ kg/cmq} \\ \text{Tensione di snervamento } f_{\text{yk}} & & 4400 \text{ kg/cmq} \\ \end{array}$

Malta utilizzata per i tiranti

Resistenza caratteristica a compressione R_{bk} 300 kg/cmg

Tensione tangenziale ammissibile τ_{c0}

6.0 kg/cmg

Tensione tangenziale ammissibile τ_{c1}

18.3 kg/cmg

Acciaio utilizzato per i tiranti

Tipo

Precomp

Tensione ammissibile σ_{fa}

10000.0 kg/cmg

Tensione di snervamento f_{vk}

16000.0 kg/cmg

Condizioni di carico

Simbologia e convenzioni adottate

Le ascisse dei punti di applicazione del carico sono espresse in [m] rispetto alla testa della

Le ordinate dei punti di applicazione del carico sono espresse in [m] rispetto alla testa della paratia

Forza orizzontale espressa in [kg], positiva da monte verso valle F_{x}

 F_{v} Forza verticale espressa in [kg], positiva verso il basso

Momento espresso in [kgm], positivo ribaltante M

O_i, O_f Intensità dei carichi distribuiti sul profilo espresse in [kg/mg]

V_i, V_s Intensità dei carichi distribuiti sulla paratia espresse in [kg/mq], positivi da monte verso valle

R Risultante carico distribuito sulla paratia espressa in [kg]

Condizione nº 2

Carico distribuito sul profilo

 $X_i = -3.50$

 $X_f = -0.50$

 $O_i = 7000$

 $Q_f = 7000$

Condizione n° 3

Carico distribuito sul profilo

 $X_i = 0.00$

 $X_f = 3.50$ $Q_i = 1000$

 $Q_f = 1000$

Descrizione tiranti di ancoraggio

Tiranti attivi armati con trefoli

Numero di file di tiranti

Simbologia adottata

numero d'ordine della fila N

Υ ordinata della fila espressa in [m] misurata dalla testa della paratia

numero di tiranti della fila nr.

diametro della perforazione espresso in [cm] D

inclinazione dei tiranti della fila rispetto all'orizzontale espressa in [°]

allineamento dei tiranti della fila (CENTRATI o SFALSATI)

area del singolo trefolo espressa in [cmq] Αt

numero di trefoli del tirante nt

T tiro iniziale espresso in [kg]

N Y nr. Alfa ALL At nt Т D 1 0.35 16 20.00 30.00 Sfalsati 1.39 4 20000

Combinazioni di carico

Nella tabella sono riportate le condizioni di carico di ogni combinazione con il relativo coefficiente di partecipazione.

Combinazione n° 1

Spinta terreno

Condizione 1 (Sisma) x 1.00
Condizione 2 (sovraccarico loculi) x 1.00
Condizione 3 (sovraccarico terreno eccedente)x 1.00

Combinazione nº 2

Spinta terreno

Condizione 2 (sovraccarico loculi) x 1.00 Condizione 3 (sovraccarico terreno eccedente)x 1.00

Impostazioni di progetto

Spinte e verifiche secondo:

- D.M. 11/03/1988
- D.M. 16/01/1996

Verifica materiali

Tensioni ammissibili

Impostazioni di analisi

Rottura del terreno

Pressione passiva

Sisma

Coefficiente di intensità sismica (percento) 7.00

Forma del diagramma di incremento sismico triangolare con vertice in basso sulla parte fuori terra

Influenza sisma nella spinta attiva da monte

Influenza δ (angolo di sttrito terreno-paratia)

Nel calcolo del coefficiente di spinta attiva Ka e nell'inclinazione della spinta attiva (non viene considerato per la spinta passiva)

Stabilità globale

Metodo di Fellenius

Coefficiente di sicurezza stabilità globale statico 1.30

Coefficiente di sicurezza stabilità globale sismico 1.30

Verifica a sifonamento

Coefficiente di sicurezza a sifonamento 3.00

Verifica al sollevamento del fondo scavo

Coefficiente di sicurezza al sollevamento del fondo scavo 1.50

Analisi della spinta

Pressioni terreno

Simbologia adottata

Sono riportati i valori delle pressioni in corrispondenza delle sezioni di calcolo

Y ordinata rispetto alla testa della paratia espressa in [m] e positiva verso il basso. Le pressioni sono tutte espresse in [kg/mq]

σ_{am} sigma attiva da monte

σ_{av} sigma attiva da valle

σ_{pm} sigma passiva da monte

- σ_{pv} sigma passiva da valle
- $\delta_a \qquad \text{inclinazione spinta attiva espressa in [°]}$
- δ_p inclinazione spinta passiva espressa in [°]

Con		ne nr. 1					
Nr.	Y(m)	σ_{am}	σ_{av}	σ_{pm}	σ_{pv}	δ_{a}	$\delta_{ m p}$
1	0.00	1056	0	2933	0	12.0	0.0
4	0.30	1284	0	4059	0	12.0	0.0
7	0.60	1513	0	5156	0	12.0	0.0
10	0.90	1742	0	6253	0	12.0	0.0
13	1.20	1972	0	7350	0	12.0	0.0
16	1.50	2202	0	8447	0	12.0	0.0
19	1.80	2433	0	9543	0	12.0	0.0
22	2.10	2664	0	10446	0	12.0	0.0
25	2.40	2895	0	9976	0	12.0	0.0
	2.70	3127	0	10991	0	12.0	0.0
28				12000		12.0	0.0
31	3.00	3353	0		0		
34	3.30	3451	0	12807	0	12.0	0.0
37	3.60	3467	0	13602	0	12.0	0.0
40	3.90	3474	0	14403	0	12.0	0.0
43	4.20	3476	0	15210	0	12.0	0.0
46	4.50	3486	0	16021	0	12.0	0.0
49	4.80	3665	0	16836	0	12.0	0.0
52	5.10	3860	0	17653	0	12.0	0.0
55	5.40	4044	0	18459	0	12.0	0.0
58	5.52	2178	0	23990	0	13.0	0.0
61	5.80	2336	0	24794	0	13.0	0.0
64	6.10	2486	0	25703	0	13.0	0.0
67	6.40	2638	0	26613	0	13.0	0.0
70	6.70	2788	0	27522	0	13.0	0.0
73	7.00	2939	0	28432	0	13.0	0.0
76	7.30	3090	0	29341	0	13.0	0.0
79	7.60	3240	0	30250	0	13.0	0.0
82	7.90	3402	0	31159	4417	13.0	0.0
85	8.20	3584	0	32068	5938	13.0	0.0
88	8.50	3767	830	32916	17423	13.0	0.0
91	8.80	3949	1155	33807	24593	13.0	0.0
94	9.10	4131	1352	34715	21553	13.0	0.0
97	9.40	4314	1498	35624	21317	13.0	0.0
100	9.70	4509	1620	36532	9064	13.0	0.0
103	9.98	4671	1717	37334	9180	13.0	0.0
106		2198	0	48063	17101	15.0	0.0
109		2361	0	49191	17597	15.0	0.0
112		2526	0	50339	17476	15.0	0.0
115		2691	0	51488	17565	15.0	0.0
118		2856	16	52637	17776	15.0	0.0
121		3021	108	53786	17093	15.0	0.0
124		3183	199	54936	17425	15.0	0.0
124		3348	288	56086	17795	15.0	0.0
			200 344	57236	18193	15.0	0.0
130	12.50	3513	344	57230	10132	15.0	0.0

13 13 13 14 14 14 15 15	6 13.10 9 13.40 2 13.70 5 14.00 8 14.30 1 14.60	3678 3843 4008 4173 4338 4502 4689 4851	209 75 0 0 0 0 0	58242 59345 60496 61646 62796 63946 65096 66247	18612 19049 19499 19961 20431 20909 21394 21883	15.0 15.0 15.0 15.0 15.0 15.0 15.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0
Co	mbinazio	ne nr. 2					
Nr. 1 4 7 10 13 16 19 22 28 31 34 46 49 52 55 8 61 64 67 70 73 76 79 82 88 91 94 97 100 103 106 109		To am 235 496 755 1016 1277 1539 1802 2064 2327 2590 2848 2978 3025 3063 3097 3139 3350 3576 3792 1938 2125 2308 2491 2673 2855 3037 3219 3402 3584 3767 3949 4131 4314 4509 4671 2198 2361 2526 2691	σ _{av} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	орт 2933 4059 5156 6253 7350 8447 9543 10446 9976 10991 12000 12807 13602 14403 15210 16021 16836 17653 18459 23990 24794 25703 26613 27522 28432 29341 30250 31159 32068 32916 33807 34715 35624 36532 37334 48063 49191 50339 51488	σ _{pv} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	δ _a 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	δ _p 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
118	11.30	2856	16	52637	17776	15.0	0.0

121	11.60	3021	108	53786	17093	15.0	0.0
124	11.90	3183	199	54936	17425	15.0	0.0
127	12.20	3348	288	56086	17795	15.0	0.0
130	12.50	3513	344	57236	18193	15.0	0.0
133	12.80	3678	209	58242	18612	15.0	0.0
136	13.10	3843	75	59345	19049	15.0	0.0
139	13.40	4008	0	60496	19499	15.0	0.0
142	13.70	4173	0	61646	19961	15.0	0.0
145	14.00	4338	0	62796	20431	15.0	0.0
148	14.30	4502	0	63946	20909	15.0	0.0
151	14.60	4689	0	65096	21394	15.0	0.0
154	14.90	4851	0	66247	21883	15.0	0.0

Analisi della paratia

L'analisi è stata eseguita per combinazioni di carico

La paratia è analizzata con il metodo degli elementi finiti.

Essa è discretizzata in 156 elementi fuori terra e 144 elementi al di sotto della linea di fondo scavo.

Le molle che simulano il terreno hanno un comportamento elastoplastico: una volta raggiunta la pressione passiva non reagiscono ad ulteriori incremento di carico.

Altezza fuori terra della paratia	[m]	7.80
Profondità di infissione	[m]	7.20
Altezza totale della paratia	[m]	15.00

Forze agenti sulla paratia

Simbologia adottata e sistema di riferimento

Tutte le forze sono espresse in [kg] e si intendono positive se dirette da monte verso valle. Esse sono riferite ad un metro di larghezza della paratia

Y_a rappresenta il punto di applicazione espresso in [m] rispetto alla testa della paratia.

Combinazione nr. 1

Combination in 2		
	Valore [kg]	$Y_a[m]$
Spinta agente sulla paratia	18246.11	4.52
Incremento sismico della spinta	3199.86	2.60
Spinta falda sulla paratia	21600.00	8.60
Risultante carichi esterni applicati	0.00	0.00
Resistenza passiva agente sulla paratia	-37793.13	10.10
Controspinta agente sulla paratia	7677.81	14.30
Componente orizzontale sforzo tiranti	12927.00	0.35
Punto di nullo del diagramma	[m]	7.80
Punto di inversione del diagramma	[m]	10.20
Centro di rotazione	[m]	12.94

Combinazione nr. 2

	Valore [k	(g]	$Y_a[m]$
Spinta agente sulla paratia	18317.09	4.51	
Spinta falda sulla paratia	21600.00	8.60	
Risultante carichi esterni applicati	0.00	0.00	
Resistenza passiva agente sulla paratia	-35369.10	10.12	

Controspinta agente sulla paratia	6519.26	14.33
Componente orizzontale sforzo tiranti	11063.92	0.35
Punto di nullo del diagramma	[m]	7.80
Punto di inversione del diagramma	[m]	10.05
Centro di rotazione	[m]	13.01

Analisi dei tiranti Caratteristiche dei tiranti utilizzati

Simbologia adottata

Y ordinata della fila rispetto alla testa della paratia espressa in [m]

nt numero di tiranti della fila

 α inclinazione dei tiranti della fila espressa in gradi

N sforzo su ogni tirante della fila espresso in [kg]

L lunghezza totale del tirante espressa in [m]

L_f lunghezza di fondazione tirante espressa in [m]

A_f area di armatura in ogni tirante espressa in [cmq]

σ_f tensione di trazione nell'acciaio del tirante espressa in [kg/cmq]

1 file di tiranti attivi armati con trefoli

Risultati tiranti - Combinazione nr. 1

N°	X	nt	α	N
1	0.35	16	30.00	44780

Risultati tiranti - Combinazione nr. 2

N°	X	nt	α	N
1	0.35	16	30.00	38327

Pressioni orizzontali agenti sulla paratia

Simbologia adottata

N° numero d'ordine della sezione

Y ordinata della sezione espressa in [m]

P pressione sulla paratia espressa in [kg/mq] positiva da monte verso valle

Pressioni terreno - Combinazione nr. 1

N°	Υ	Р
1	0.00	0.00
4	0.10	1107.49
7	0.25	1219.42
10	0.40	1330.61
13	0.55	1442.21
16	0.70	1554.09
19	0.85	1666.22
22	1.00	1778.53
25	1.15	1891.02
28	1.30	2003.62
31	1.45	2116.35
34	1.60	2229.15
37	1.75	2342.05

40 43	1.90 2.05	2455.01 2568.03
46	2.20	2681.09
49	2.35	2794.20
52 55	2.50 2.65	2907.35 3020.54
58	2.80	3133.75
61	2.95	3244.39
64	3.10	3336.04
67	3.25	3371.35
70	3.40	3381.28
73	3.55	3389.27
76 79	3.70 3.85	3396.25 3397.75
82	4.00	3402.46
85	4.15	3400.68
88	4.30	3402.06
91	4.45	3405.50
94	4.60	3454.26
97	4.75	3552.69
100 103	4.90 5.05	3649.44 3744.01
103	5.20	3837.16
109	5.35	3927.08
112	5.50	3052.89
115	5.65	2202.93
118	5.80	2275.79
121	5.95	2349.25
124 127	6.10 6.25	2422.66 2496.28
130	6.40	2570.39
133	6.55	2643.70
136	6.70	2717.01
139	6.85	2790.31
142	7.00	2864.12
145 148	7.15 7.30	2937.43 3010.75
151	7.45	3084.07
154	7.60	3157.41
157	7.75	3231.29
1	7.80	-1028.70
4	7.95	-1138.82
7 10	8.10 8.25	-1359.78 -3641.73
13	8.40	-8404.57
16	8.55	-12398.14
19	8.70	-11803.37
22	8.85	-11214.49
25	9.00	-10632.84
28 31	9.15 9.30	-10059.64 -9495.99
21	5.50	-3-33.33

34 37 40 43 46 49 52 55	9.45 9.60 9.75 9.90 10.05 10.20 10.35 10.50	-8942.92 -7298.63 -4660.73 -4635.98 -15055.73 -15354.50 -14245.61 -13140.80
58 61	10.65 10.80	-12074.04 -11045.52
64	10.95	-10055.12
67 70	11.10	-9102.38
73	11.25 11.40	-8186.60 -7306.84
76	11.55	-6461.94
79	11.70	-5650.57
82	11.85	-4871.22
85	12.00	-4122.27
88 91	12.15 12.30	-3401.97
94	12.45	-2708.50 -2039.96
97	12.60	-1394.42
100	12.75	-769.91
103	12.90	-164.46
106	13.05	423.89
109 112	13.20 13.35	997.07
115	13.50	1556.97 2105.40
118	13.65	2644.11
121	13.80	3174.74
124	13.95	3698.82
127	14.10	4217.78
130 133	14.25 14.40	4732.87
136	14.55	5245.22 5755.76
139	14.70	6265.25
142	14.85	6774.26
145	15.00	7283.13

Pressioni terreno - Combinazione nr. 2

N°	Υ	Р
1	0.00	0.00
4	0.10	315.23
7	0.25	442.59
10	0.40	569.21
13	0.55	696.26
16	0.70	823.56
19	0.85	951.13
22	1.00	1078.87
25	1.15	1206.79
28	1.30	1334.83

31 34 37 40 43 46 49 52 55 58 61 64 67 70 73	1.45 1.60 1.75 1.90 2.05 2.20 2.35 2.50 2.65 2.80 2.95 3.10 3.25 3.40 3.55	1462.99 1591.23 1719.56 1847.95 1976.40 2104.90 2233.45 2362.03 2490.65 2619.29 2745.37 2852.45 2903.20 2928.56 2951.99
76	3.70	2974.40
79 82	3.85 4.00	2991.33 3011.47
85	4.15	3025.13
88	4.30	3041.94
91	4.45	3060.82
94 97	4.60 4.75	3125.01 3238.87
100	4.90	3351.06
103	5.05	3461.06
106	5.20	3569.65
109	5.35	3675.00
112 115	5.50 5.65	2816.24 1982.57
118	5.80	2070.81
121	5.95	2159.64
124	6.10	2248.42
127	6.25	2337.41
130 133	6.40 6.55	2426.90 2515.58
136	6.70	2604.26
139	6.85	2692.94
142	7.00	2782.12
145	7.15	2870.81
148 151	7.30 7.45	2959.50 3048.20
154	7.60	3136.91
157	7.75	3226.16
1	7.80	-1028.70
4	7.95	-1138.82
7 10	8.10 8.25	-1359.78 -3641.73
13	8.40	-8404.57
16	8.55	-11089.28
19	8.70	-10574.34
22	8.85	-10063.16

28 9.15 31 9.30 34 9.45 37 9.60 40 9.75 43 9.90 46 10.05 49 10.20 52 10.35 55 10.50 58 10.65 61 10.80 64 10.95 67 11.10 70 11.25 73 11.40 76 11.55 79 11.70 82 11.85 85 12.00 88 12.15 91 12.30 94 12.45 97 12.60 100 12.75 103 12.90 106 13.05 109 13.20 112 13.35 115 13.65 121 13.80 124 13.95 127 14.10 130 14.25 132 14.40	-8564.15 -8079.54 -7298.63 -4660.73 -4635.98 -15055.73 -14040.84 -13028.84 -12048.46 -11100.31 -10184.68 -9301.55 -8450.65 -7631.45 -6843.22 -6085.02 -5355.75 -4654.17 -3978.90 -3328.48 -2701.36 -2095.91 -1510.47 -943.35 -392.85 142.73 665.05 1175.76 1676.44 2168.60 2653.68 3133.03 3607.87 4079.33
124 13.95	3133.03
127 14.10	3607.87

Valori massimi e minimi sollecitazioni per metro di paratia

Simbologia adottata

Y ordinata della sezione rispetto alla testa espressa in [m]

 M_{max} , M_{min} momento flettente massimo e minimo espresso in [kgm]

 N_{max} , N_{min} sforzo normale massimo e minimo espresso in [kg] (positivo di compressione)

 T_{max} , T_{min} taglio massimo e minimo espresso in [kg]

Combinazione nr. 1

$y_{Mmax} = 10.65$ $y_{Tmax} = 8.20$ $y_{Nmax} = 15.00$	$M_{max} = 25854$ $T_{max} = 17957$ $N_{max} = 26313$	$y_{Mmin} = 4.60$ $y_{Tmin} = 0.35$ $y_{Nmin} = 0.00$	$M_{min} = -31753$ $T_{min} = -12520$ $N_{min} = 0$
Combinazione	nr. 2		
$y_{Mmax} = 10.70$	$M_{max} = 22001$	$y_{Mmin} = 4.80$	$M_{min} = -30732$
$y_{Tmax} = 8.20$	$T_{max} = 16691$	$y_{Tmin} = 0.35$	$T_{min} = -10931$
$y_{Nmax} = 15.00$	$N_{max} = 25237$	$y_{Nmin} = 0.00$	$N_{min} = 0$

Sollecitazioni per metro di paratia

Simbologia adottata

numero d'ordine della sezione Nr.

ordinata della sezione rispetto alla testa espressa in [m]

Y M momento flettente espresso in [kgm]

sforzo normale espresso in [kg] (positivo di compressione)

taglio espresso in [kg] Т

Combinazione nr. 1

Com	Combinazione nr. 1					
Nr.	Υ	M	N	T		
1	0.00	0	0	0		
4	0.15	12	188	163		
7	0.30	50	377	343		
10	0.40	-556	7966	-12454		
13	0.55	-2408	8155	-12246		
16	0.70	-4229	8343	-12022		
19	0.85	-6014	8532	-11780		
22	1.00	-7762	8720	-11522		
25	1.15	-9470	8909	-11247		
28	1.30	-11135	9097	-10955		
31	1.45	-12755	9286	-10646		
34	1.60	-14328	9474	-10320		
37	1.75	-15850	9663	-9977		
40	1.90	-17320	9851	-9617		
43	2.05	-18735	10040	-9241		
46	2.20	-20092	10228	-8847		
49	2.35	-21388	10417	-8437		
52	2.50	-22622	10605	-8009		
55	2.65	-23790	10793	-7564		
58	2.80	-24890	10982	-7103		
61	2.95	-25920	11170	-6624		
64	3.10	-26876	11359	-6127		
67	3.25	-27756	11547	-5604		
70	3.40	-28556	11736	-5061		
73	3.55	-29274	11924	-4499		
76	3.70	-29905	12113	-3920		
79	3.85	-30449	12301	-3323		
82	4.00	-30901	12490	-2709		
85	4.15	-31261	12678	-2078		
88	4.30	-31524	12867	-1430		
91	4.45	-31689	13055	-765		
94	4.60	-31753	13244	-80		
97	4.75	-31711	13432	634		

100 103		-31561 -31296	13621 13809	1379 2156
106		-30912	13998	2963
109 112		-30405	14186	3802
115		-29770 20024	14375	4670
118		-29024 -28184	14563	5283
121		-27245	14752 14940	5925
124		-26204	15129	6596 7294
127		-25056	15317	8020
130	6.40	-23796	15506	8774
133	6.55	-22422	15694	9556
136	6.70	-20928	15883	10365
139	6.85	-19311	16071	11203
142	7.00	-17566	16260	12069
145	7.15	-15689	16448	12962
148 151	7.30 7.45	-13676	16637	13883
154	7.45	-11522 -9225	16825	14833
157	7.75	-9225 -6778	17014 17202	15810
160	7.90	-4201	17391	16815 17379
163	8.05	-1563	17579	17727
166	8.20	1124	17768	17957
169	8.35	3825	17956	17706
172	8.50	6448	18145	16595
175	8.65	8881	18333	15247
178	8.80	11116	18522	13977
181	8.95	13163	18710	12783
184 187	9.10	15035	18899	11665
190	9.25 9.40	16743	19087	10622
193	9.55	18297 19710	19276 19464	9651
196	9.70	21001	19653	8751 8256
199	9.85	22234	19841	8256 7950
202	10.00	23421	20030	7366
205	10.15	24441	20218	5476
208	10.30	25175	20407	3585
211	10.45	25633	20595	1850
214	10.60	25838	20784	269
217	10.75	25813	20972	-1166
220 223	10.90 11.05	25579	21161	-2460
223 226	11.20	25159 24570	21349	-3618
229	11.35	23834	21538 21726	-4647 EEE1
232	11.50	22967	21915	-5551 -6336
235	11.65	21988	22103	-7008
238	11.80	20914	22292	-7571
241	11.95	19760	22480	-8029
244	12.10	18542	22669	-8388
	12.25	17275	22857	-8651
250	12.40	15973	23046	-8823

253 256 259 262 265 268 271 274 277 280 283 286 289 292 295 298 301	12.55 12.70 12.85 13.00 13.15 13.30 13.45 13.60 13.75 13.90 14.05 14.05 14.20 14.35 14.50 14.65 14.80 14.95	14649 13316 11988 10675 9390 8144 6948 5812 4748 3765 2874 2085 1407 851 426 142	23234 23423 23611 23800 23988 24177 24365 24554 24742 24931 25119 25308 25496 25685 25873 26062 26250	-8907 -8907 -8825 -8665 -8428 -8117 -7734 -7281 -6758 -6167 -5510 -4786 -3996 -3140 -2220 -1234 -183
Com	binazio	one nr. 2		
Nr.	Υ	M	N	T
1	0.00 0.15	0	0 188	0 44
7	0.30	14	377	107
10	0.40	-526	6890	-10904
13	0.55	-2154	7079	-10809
16	0.70	-3767	7267	-10695
19	0.85	-5362	7456	-10562
22 25	1.00 1.15	-6935 -8484	7644 7833	-10410 -10239
28	1.13	-10006	8021	-10239
31	1.45	-11497	8210	-9838
34	1.60	-12956	8398	-9609
37	1.75	-14379	8587	-9361
40	1.90	-15763	8775	-9093
43	2.05	-17106	8964	-8807
46 49	2.20 2.35	-18404 -19655	9152 9341	-8501 -8175
52	2.50	-20856	9529	-7831
55	2.65	-22003	9718	-7467
58	2.80	-23095	9906	-7084
61	2.95	-24127	10095	-6681
64	3.10	-25098	10283	-6257
67	3.25	-26003	10472	-5805
70 73	3.40 3.55	-26839 -27601	10660 10849	-5331 -4837
76	3.70	-28289	11037	-4322
79	3.85	-28897	11226	-3788
82	4.00	-29424	11414	-3233
85	4.15	-29866	11603	-2660
88	4.30	-30221	11791	-2067
91	4.45	-30485	11980	-1455

94 97 100 103 106 109 112 115	5.05 5.20 5.35 5.50	-30656 -30730 -30701 -30564 -30315 -29949 -29461 -28866	12168 12357 12545 12734 12922 13111 13299 13488	-820 -155 545 1278 2044 2844 3675 4254
118 121 124 127 130 133 136 139 142	5.95 6.10 6.25 6.40 6.55 6.70 6.85	-28183 -27405 -26530 -25551 -24465 -23267 -21952 -20517 -18956	13676 13865 14053 14242 14430 14619 14807 14996	4865 5505 6176 6877 7608 8370 9162 9984
145 148 151 154 157 160 163 166	7.15 7.30	-17264 -17264 -15439 -13474 -11365 -9108 -6720 -4272 -1776	15184 15373 15561 15750 15938 16127 16315 16504 16692	10836 11718 12630 13573 14546 15549 16114 16461 16691
169 172 175 178 181 184 187 190	8.35 8.50 8.65 8.80 8.95 9.10 9.25 9.40	735 3169 5432 7525 9457 11238 12878 14387	16881 17069 17258 17446 17635 17823 18012 18200	16441 15397 14241 13151 12126 11166 10269 9434
193 196 199 202 205 208 211 214	9.55 9.70 9.85 10.00 10.15 10.30 10.45 10.60	15773 17051 18271 19443 20451 21189 21679 21942	18389 18577 18766 18954 19143 19331 19520 19708	8661 8166 7860 7276 5437 3740 2182 758
217 220 223 226 229 232 235 238 241 244	10.75 10.90 11.05 11.20 11.35 11.50 11.65 11.80 11.95 12.10	21997 21865 21563 21108 20519 19811 18999 18100 17126 16092	19897 20085 20274 20462 20651 20839 21028 21216 21405	-537 -1707 -2757 -3693 -4518 -5239 -5858 -6380 -6810
		10002	21593	-7151

247	12.25	15011	21782	-7406
250	12.40	13895	21970	-7581
253	12.55	12757	22159	-7676
256	12.70	11609	22347	-7696
259	12.85	10460	22536	-7643
262	13.00	9323	22724	-7519
265	13.15	8208	22913	-7327
268	13.30	7124	23101	-7069
271	13.45	6082	23290	-6745
274	13.60	5092	23478	-6359
277	13.75	4162	23667	-5910
280	13.90	3303	23855	-5399
283	14.05	2523	24044	-4829
286	14.20	1831	24232	-4198
289	14.35	1237	24421	-3509
292	14.50	748	24609	-2760
295	14.65	375	24797	-1952
298	14.80	125	24986	-1086
301	14.95	8	25174	-161

Verifiche idrauliche Verifica a sifonamento

Simbologia adottata

ΔH : Perdita di carico espressa in [m]

: Lunghessa di filtrazione espressa in [m] L

γm : Peso di galleggiamento medio espresso in [kg/mc]

: Gradiente idraulico critico İc : Gradiente idraulico di efflusso

FS_{sif}: Coefficiente di sicurezza a sifonamento

Combinazione nr. 1

ΔΗ	L	γm	İc	İE	FS_{sif}
4.80	19.20	952.08	0.95	0.25	3.81

Combinazione nr. 2

ΔΗ	L	γm	İc	i _E	FS_{sif}
4.80	19.20	952.08	0.95	0.25	3.81

Verifica al sollevamento del fondo scavo

Simbologia adottata

ΔH : Perdita di carico espressa in [m]

L : Lunghessa di filtrazione espressa in [m]

: Gradiente idraulico di efflusso

: Profondità di infissione espressa in [m]

: Pressione totale al piede della paratia espressa in [kg/cmq] : Pressione idrica al piede della paratia espressa in [kg/cmq] FS_{scavo}: Coefficiente di sicurezza a sollevamento fondo scavo

Combinazione nr. 1

İE ΔΗ L 1 σt Uw FS_{scavo}

4.80	19.20	0.25	7.20	14180.00	9000.00	1.58
Combin ΔH 4.80	azione nr. L 19.20	2 i _∈ 0.25	l 7 20	ot 14180.00	u w 9000.00	FS _{scavo}

Spostamenti massimi e minimi della paratia

Simbologia adottata

Y ordinata della sezione rispetto alla testa della paratia espressa in [m]

u_{max}, u_{min} spostamento orizzontale massimo e minimo espresso in [cm] positivo verso valle

 V_{max} , V_{min} spostamento verticale massimo e minimo espresso in [cm] positivo verso il basso

Combinazione nr. 1

$y_{Umax} = 1.90$	u _{max} =1.6382	y _{∪min} =15.00	u _{min} =-0.1766
$y_{Vmax} = 0.00$	v _{max} =0.0160	y _{∨min} =0.00	v _{min} =0.0000
Combinazion $y_{Umax} = 2.85$ $y_{Vmax} = 0.00$	u _{max} =1.3383 v _{max} =0.0150	y _{∪min} =15.00 y _{∨min} =0.00	u _{min} =-0.1555 v _{min} =0.0000

Spostamenti della paratia

Simbologia adottata

N° numero d'ordine della sezione

Y ordinata della sezione rispetto alla testa della paratia espressa in [m]

u spostamento orizzontale espresso in [cm] positivo verso valle

v spostamento verticale espresso in [cm] positivo verso il basso

Combinazione nr. 1

N°	Υ	u	V
1	0.00	1.6081	0.0160
4	0.15	1.6114	0.0160
7	0.30	1.6147	0.0160
10	0.45	1.6180	0.0159
13	0.60	1.6213	0.0159
16	0.75	1.6244	0.0158
19	0.90	1.6274	0.0157
22	1.05	1.6301	0.0156
25	1.20	1.6325	0.0155
28	1.35	1.6346	0.0154
31	1.50	1.6363	0.0154
34	1.65	1.6375	0.0153
37	1.80	1.6381	0.0152
40	1.95	1.6382	0.0151
43	2.10	1.6376	0.0150
46	2.25	1.6363	0.0149
49	2.40	1.6343	0.0148
52	2.55	1.6315	0.0147
55	2.70	1.6279	0.0146
58	2.85	1.6234	0.0145

61 64	3.00 3.15	1.6180 1.6117	0.0144 0.0143
67	3.30	1.6044	0.0142
70	3.45	1.5961	0.0140
73	3.60	1.5868	0.0139
76	3.75	1.5764	0.0138
79	3.90	1.5649	0.0137
82	4.05	1.5523	0.0136
85	4.20	1.5386	0.0135
88	4.35	1.5238	0.0133
91	4.50	1.5078	0.0132
94	4.65	1.4907	0.0131
97	4.80	1.4725	0.0130
100	4.95	1.4532	0.0128
103	5.10	1.4327	0.0127
106	5.25	1.4110	0.0126
109	5.40	1.3883	0.0124
112	5.55	1.3645	0.0123
115	5.70	1.3397	0.0121
118	5.85	1.3138	0.0120
121	6.00	1.2869	0.0119
124	6.15	1.2590	0.0117
127	6.30	1.2302	0.0116
130	6.45	1.2006	0.0114
133	6.60	1.1700	0.0113
136	6.75	1.1388	0.0111
139	6.90	1.1067	0.0110 0.0108
142 145	7.05	1.0740 1.0407	0.0108
148	7.20 7.35	1.0407	0.0107
151	7.50	0.9726	0.0103
154	7.65	0.9379	0.0103
157	7.80	0.9029	0.0102
160	7.95	0.8676	0.0098
163	8.10	0.8323	0.0097
166	8.25	0.7970	0.0095
169	8.40	0.7617	0.0093
172	8.55	0.7266	0.0092
175	8.70	0.6917	0.0090
178	8.85	0.6572	0.0088
181	9.00	0.6231	0.0086
184	9.15	0.5895	0.0085
187	9.30	0.5565	0.0083
190	9.45	0.5241	0.0081
193	9.60	0.4923	0.0079
196	9.75	0.4613	0.0077
199	9.90	0.4311	0.0075
202	10.05	0.4016	0.0073
205	10.20	0.3731	0.0071
208	10.35	0.3454	0.0069
211	10.50	0.3186	0.0067

214 217 220 223 226 229 232 235 238 241 244 247 250 253 256 259 262 265 268 271 274 277 280 283 286 289 292	10.65 10.80 10.95 11.10 11.25 11.40 11.55 11.70 11.85 12.00 12.15 12.30 12.45 12.60 12.75 12.90 13.05 13.20 13.35 13.50 13.65 13.80 13.95 14.10 14.25 14.40 14.55	0.2927 0.2678 0.2438 0.2207 0.1985 0.1771 0.1567 0.1370 0.1181 0.0999 0.0825 0.0657 0.0495 0.0338 0.0187 0.0040 -0.0103 -0.0242 -0.0377 -0.0510 -0.0641 -0.0770 -0.0897 -0.1023 -0.1147 -0.1272 -0.1395	0.0065 0.0063 0.0061 0.0059 0.0057 0.0055 0.0053 0.0051 0.0049 0.0047 0.0045 0.0042 0.0040 0.0038 0.0036 0.0033 0.0031 0.0029 0.0027 0.0024 0.0022 0.0020 0.0017 0.0015 0.0012 0.0010 0.0007
295 298	14.70 14.85	-0.1519 -0.1642	0.0005 0.0003
301	15.00	-0.1766	0.0000
Combi	nazione nr. 2		
1	Y 0.00	u 1 2272	V
4	0.15	1.2373 1.2449	0.0150
7	0.30	1.2524	0.0150 0.0150
10	0.45	1.2600	0.0130
13	0.60	1.2675	0.0149
16	0.75	1.2750	0.0148
19	0.90	1.2822	0.0147
22	1.05	1.2893	0.0147
25 28	1.20 1.35	1.2961	0.0146
31	1.50	1.3026 1.3087	0.0145
34	1.65	1.3143	0.0144 0.0144
37	1.80	1.3195	0.0144
40	1.95	1.3242	0.0143
43	2.10	1.3283	0.0141
46	2.25	1.3317	0.0140
49	2.40	1.3345	0.0139
52	2.55	1.3365	0.0138

55 58 61 64 67 70 73 76 79 82 85 88 91 94	2.70 2.85 3.00 3.15 3.30 3.45 3.60 3.75 3.90 4.05 4.20 4.35 4.50 4.65	1.3378 1.3383 1.3379 1.3367 1.3345 1.3314 1.3274 1.3223 1.3162 1.3091 1.3009 1.2916 1.2813 1.2698	0.0137 0.0136 0.0136 0.0135 0.0134 0.0133 0.0131 0.0130 0.0129 0.0128 0.0127 0.0126 0.0125 0.0124
97	4.80	1.2573	0.0123
100 103	4.95 5.10	1.2436 1.2288	0.0121 0.0120
106	5.25	1.2130	0.0120
109	5.40	1.1961	0.0118
112	5.55	1.1780	0.0116
115	5.70	1.1590	0.0115
118	5.85	1.1389	0.0114
121	6.00	1.1178	0.0112
124	6.15	1.0958	0.0111
127 130	6.30 6.45	1.0728 1.0489	0.0110 0.0108
133	6.60	1.0241	0.0103
136	6.75	0.9985	0.0106
139	6.90	0.9721	0.0104
142	7.05	0.9451	0.0103
145	7.20	0.9173	0.0101
148	7.35	0.8890	0.0100
151	7.50	0.8601	0.0098
154 157	7.65	0.8308 0.8011	0.0097 0.0095
160	7.80 7.95	0.7711	0.0093
163	8.10	0.7409	0.0092
166	8.25	0.7105	0.0090
169	8.40	0.6802	0.0089
172	8.55	0.6498	0.0087
175	8.70	0.6197	0.0086
178	8.85	0.5897	0.0084
181	9.00	0.5601	0.0082
184 187	9.15 9.30	0.5308 0.5019	0.0080 0.0079
190	9.45	0.4735	0.0079
193	9.60	0.4456	0.0075
196	9.75	0.4183	0.0073
199	9.90	0.3917	0.0072
202	10.05	0.3657	0.0070
205	10.20	0.3404	0.0068

208	10.35	0.3159	0.0066
211	10.50	0.2921	0.0064
214	10.65	0.2691	0.0062
217	10.80	0.2469	0.0061
220	10.95	0.2255	0.0059
223	11.10	0.2049	0.0057
226	11.25	0.1850	0.0055
229	11.40	0.1659	0.0053
232	11.55	0.1475	0.0051
235	11.70	0.1298	0.0049
238	11.85	0.1128	0.0047
241	12.00	0.0965	0.0045
244	12.15	0.0807	0.0043
247	12.30	0.0655	0.0041
250	12.45	0.0508	0.0038
253	12.60	0.0366	0.0036
256	12.75	0.0229	0.0034
259	12.90	0.0095	0.0032
262	13.05	-0.0035	0.0030
265 268	13.20	-0.0161	0.0028
271	13.35	-0.0285	0.0025
274	13.50	-0.0406	0.0023
277	13.65	-0.0526	0.0021
280	13.80	-0.0643	0.0019
283	13.95	-0.0760	0.0016
203 286	14.10	-0.0875	0.0014
289	14.25	-0.0989	0.0012
209 292	14.40 14.55	-0.1103	0.0010
292 295		-0.1216	0.0007
293 298	14.70 14.85	-0.1329	0.0005
290 301	14.85 15.00	-0.1442	0.0002
OOI	15.00	-0.1555	0.0000

Verifica armatura pali

Per la verifica delle sezioni si adotta il metodo delle tensioni ammissibili.

Descrizione armatura adottata e caratteristiche sezione

Diametro del palo

Area della sezione trasversale

Copriferro

80.00 cm

5026.55 cmq

3.00 cm

L'armatura del palo è costituita da $20\phi20(A_i=62.83 \text{ [cmq]})$ longitudinali e staffe $\phi10/12.5 \text{ [cm]}$

Simbologia adottata

Nr. numero d'ordine della sezione

Y ordinata della sezione rispetto alla testa espressa in [m]

M momento flettente agente sul palo espresso in [kgm]

T taglio agente sul palo espresso in [kg]

N sforzo normale agente sul palo espresso in [kg] (positivo di compressione)

A_f area di armatura espressa in [cmq]

 σ_c tensione nel calcestruzzo espressa in [kg/cmq]

- σ_f tensione nell'acciaio espressa in [kg/cmq]
- τ_c tensione tangenziale nel calcestruzzo espressa in [kg/cmq]
- σ_{st} tensione nelle staffe espressa in [kg/cmq]

Verifica	armature -	Combinazione n	r. 1
----------	------------	----------------	------

Nr.	Υ	М	N	Т	A_{f}	σ_{c}	$\sigma_{\rm f}$	$ au_{ extsf{c}}$	σ_{st}
1	0.00	0	0	0	62.83	0.00	0.00	0.00	0.00
4	0.15	12	188	163	62.83	0.05	0.72	0.04	17.79
7	0.30	50	377	343	62.83	0.14	1.97	0.09	39.24
10	0.40	-556	7966	-12454	62.83	2.19	31.29	3.20	1357.42
13	0.55	-2408	8155	-12246	62.83	6.04	80.53	3.69	L566.76
16	0.70	-4229	8343	-12022	62.83	10.79	182.09	3.33 2	L413.87
19	0.85	-6014	8532	-11780	62.83	15.42	309.81	3.15	1337.64
22	1.00	-7762	8720	-11522	62.83	19.92	436.73	3.03	L288.09
25	1.15	-9470	8909	-11247	62.83	24.30	561.38	2.94	L247.11
28	1.30	-11135	9097	-10955	62.83	28.55	683.18		1208.90
31	1.45	-12755	9286	-10646	62.83	32.69	801.76	2.76	L171.19
34	1.60	-14328	9474	-10320	62.83	36.70	916.87	2.67	L132.97
37	1.75	-15850	9663	-9977	62.83		L028.27		1093.70
40	1.90	-17320	9851	-9617	62.83	44.33 1	135.74	2.48	1053.11
43	2.05	-18735	10040	-9241	62.83	47.94 1	239.09	2.38	1011.02
46	2.20	-20092	10228	-8847	62.83	51.39 1	L338.10	2.28	967.33
49	2.35	-21388	10417	-8437	62.83	54.69 1	L432.58	2.17	921.97
52	2.50	-22622	10605	-8009	62.83	57.84 1	1522.32	2.06	874.89
55	2.65	-23790	10793	-7564	62.83	60.81 1	L607.15	1.95	826.07
58	2.80	-24890	10982	-7103	62.83	63.61 1	.686.86	1.83	775.47
61	2.95	-25920	11170	-6624	62.83	66.24 1	1761.25	1.70	723.08
64	3.10	-26876	11359	-6127	62.83	68.67 1	1830.13	1.58	668.66
67	3.25	-27756	11547	-5604	62.83		1893.24	1.44	611.47
70	3.40	-28556	11736	-5061	62.83		1950.31	1.30	552.16
73	3.55	-29274	11924	-4499	62.83	74.78 2	2001.14	1.16	490.89
76	3.70	-29905	12113	-3920	62.83	76.39 2	2045.51	1.01	427.68
79	3.85	-30449	12301	-3323	62.83		2083.23	0.85	362.57
82	4.00	-30901	12490	-2709	62.83		2114.10	0.70	295.60
85	4.15	-31261	12678	-2078	62.83		2137.93	0.53	226.74
88	4.30	-31524	12867	-1430	62.83		2154.52	0.37	156.07
91	4.45	-31689	13055	-765	62.83		2163.69	0.20	83.52
94		-31753	13244	-80	62.83		2165.22	0.02	8.77
97		-31711	13432	634	62.83		2158.85	0.16	69.15
100		-31561	13621	1379	62.83		2144.23	0.35	150.53
103		-31296	13809	2156	62.83		2120.99	0.55	235.36
106		-30912	13998	2963	62.83		2088.80	0.76	323.61
109		-30405	14186	3802	62.83		2047.31	0.98	415.28
112	5.50	-29770	14375	4670	62.83		L996.17	1.20	510.27
115		-29024	14563	5283	62.83		L936.67	1.36	577.56
118		-28184	14752	5925	62.83		L870.09	1.53	648.10
121	5.95	-27245	14940	6596	62.83		1796.10	1.70	721.85
124		-26204	15129	7294	62.83		L714.40	1.88	798.85
127		-25056	15317	8020	62.83		L624.69	2.07	879.17
130	6.40	-23796	15506	8774	62.83	60.95 1	L526.67	2.27	962.94

	55 -22422 70 -20928		9556 10365	62.83 62.83	57.46 1420.04	2.47 1050.30
	85 -19311		11203	62.83	53.65 1304.51	2.69 1141.52
	00 -17566		12069	62.83	49.52 1179.83 45.06 1045.74	2.91 1236.98
	15 -15689		12962	62.83	40.26 902.07	3.15 1337.40
	30 -13676		13883	62.83	35.09 748.75	3.40 1444.01
	45 -11522		14833	62.83	29.54 585.98	3.67 1559.24
154 7.0			15810	62.83	23.57 414.72	3.98 1688.28 4.34 1843.40
157 7.			16815	62.83	17.17 238.65	4.84 2055.02
160 7.9	90 -4201		17379	62.83	10.53 142.27	5.31 2255.39
163 8.0	05 -1563		17727	62.83	5.36 75.88	4.55 1932.08
166 8.2	20 1124	17768	17957	62.83	4.71 67.45	4.61 1957.17
169 8.3		17956	17706	62.83	9.65 131.46	5.38 2282.54
172 8.5			16595	62.83	16.27 214.19	4.86 2063.84
175 8.6			15247	62.83	22.64 370.65	4.25 1804.42
178 8.8			13977	62.83	28.45 529.71	3.80 1610.99
181 8.9			12783	62.83	33.75 677.50	3.42 1451.77
184 9.1			11665	62.83	38.57 813.35	3.09 1312.88
187 9.2			10622	62.83	42.96 937.51	2.80 1188.37
190 9.4			9651	62.83	46.95 1050.53	2.53 1075.35
193 9.5		19464	8751	62.83	50.57 1153.08	2.29 972.24
196 9.7		19653	8256	62.83	53.88 1246.70	2.16 915.29
199 9.8 202 10.0		19841	7950	62.83	57.03 1336.00	2.07 879.84
202 10.0 205 10.1		20030	7366	62.83	60.07 1421.87	1.92 814.05
208 10.1	· —	20218 20407	5476	62.83	62.68 1495.28	1.42 604.47
211 10.4		20595	3585 1850	62.83	64.55 1547.24	0.93 395.49
214 10.6		20393	269	62.83 62.83	65.73 1578.46	0.48 204.09
217 10.7		20972	-1166	62.83	66.25 1590.70 66.19 1585.65	0.07 29.63
220 10.9	_	21161	-2460	62.83	65.60 1564.95	0.30 128.68
223 11.0		21349	-3618	62.83	64.52 1530.19	0.64 271.57 0.94 399.77
226 11.2		21538	-4647	62.83	63.02 1482.88	1.21 513.95
229 11.3	5 23834	21726	-5551	62.83	61.14 1424.47	1.45 614.81
232 11.5	0 22967	21915	-6336	62.83	58.93 1356.38	1.66 703.01
235 11.6	5 21988	22103	-7008	62.83	56.42 1279.95	1.84 779.21
238 11.8		22292	-7571	62.83	53.67 1196.48	1.99 844.06
241 11.9		22480	-8029	62.83	50.71 1107.22	2.12 898.22
244 12.1		22669	-8388	62.83	47.58 1013.39	2.22 942.35
247 12.25		22857	-8651	62.83	44.31 916.16	2.30 977.13
250 12.4		23046	-8823	62.83	40.95 816.71	2.36 1003.28
253 12.5		23234	-8907	62.83	37.52 716.19	2.41 1021.56
256 12.70 259 12.89		23423	-8907	62.83	34.06 615.79	2.43 1032.75
262 13.00		23611	-8825	62.83	30.59 516.76	2.45 1037.70
265 13.15		23800	-8665	62.83	27.15 420.48	2.44 1037.10
268 13.30		23988 24177	-8428	62.83	23.78 328.56	2.43 1031.16
271 13.45		24365	-8117	62.83	20.51 270.96	2.40 1018.46
274 13.60		24554	-7734 -7281	62.83 62.83	17.41 232.68	2.34 993.64
277 13.75		24742	-6758	62.83	14.57 197.24 12.12 166.17	2.23 944.70
280 13.90		24931	-6167	62.83	10.15 140.86	2.02 857.42 1.73 734.55
283 14.05		25119	-5510	62.83	8.65 121.45	1.73 734.55 1.43 605.46
			0010	32.00	0.00 121.40	1.43 005.46

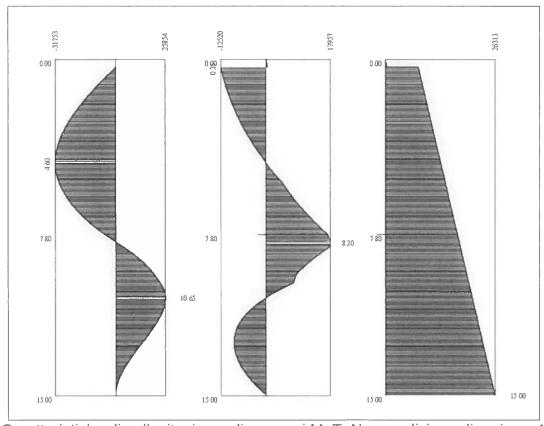
	14.20	2085	25308	-4786	62.83		05.89	1.23	521.60
289	14.35	1407	25496	-3996	62.83	6.45	92.62	1.03	435.50
292	14.50	851	25685	-3140	62.83	5.62	81.81	0.81	342.26
295	14.65	426	25873	-2220	62.83	4.99	73.66	0.57	241.91
298	14.80	142	26062	-1234	62.83	4.59	68.38	0.32	134.46
301	14.95	9	26250	-183	62.83	4.41	66.15	0.05	19.91
Veri	fica arr	nature -	Combin	azione n	r. 2				
Nr.	Υ	M	N	Т	A_{f}	σ_{c}	$\sigma_{\rm f}$	$ au_{ m c}$	σ_{st}
1	0.00	0	0	0	62.83	0.00	0.00	0.00	0.00
4	0.15	3	188	44	62.83	0.04	0.54	0.01	4.80
7	0.30	14	377	107	62.83	0.09	1.24	0.03	11.68
10	0.40	-526	6890	-10904	62.83		27.98		1188.45
13	0.55	-2154	7079	-10809	62.83		71.94		1377.38
16	0.70	-3767	7267	-10695	62.83		64.65		1254.14
19	0.75	-5362	7456	-10562	62.83		78.60		1197.42
				-10302					1162.60
22	1.00	-6935	7644		62.83		92.61		
25	1.15	-8484	7833	-10239	62.83		05.41		1134.50
28	1.30	-10006	8021	-10048	62.83		16.45		1108.23
31	1.45	-11497	8210	-9838	62.83		25.40		1081.86
34	1.60	-12956	8398	-9609	62.83		31.96		1054.53
37		-14379	8587	-9361	62.83		35.88		1025.80
40	1.90	-15763	8775	-9093	62.83	40.34 10		2.35	995.43
43		-17106	8964	-8807	62.83	43.76 11		2.27	963.25
46	2.20	-18404	9152	-8501	62.83	47.07 12	29.47	2.19	929.19
49	2.35	-19655	9341	-8175	62.83	50.26 13	20.52	2.10	893.19
52	2.50	-20856	9529	-7831	62.83	53.31 14	07.79	2.02	855.20
55	2.65	-22003	9718	-7467	62.83	56.24 14	91.06	1.92	815.20
58	2.80	-23095	9906	-7084	62.83	59.02 15	70.11	1.82	773.16
61	2.95	-24127	10095	-6681	62.83	61.65 16	44.72	1.72	729.09
64	3.10	-25098	10283	-6257	62.83	64.12 17	14.67	1.61	682.72
67	3.25	-26003	10472	-5805	62.83	66.42 17	79.66	1.49	633.33
70	3.40	-26839	10660	-5331	62.83	68.55 18	39.41	1.37	581.56
73		-27601	10849	-4837	62.83	70.50 18	93.68	1.24	
76		-28289	11037	-4322	62.83	72.25 19		1.11	471.41
79		-28897	11226	-3788	62.83	73.80 19		0.97	413.09
82		-29424	11414	-3233	62.83	75.15 20		0.83	352.65
85		-29866	11603	-2660	62.83	76.28 20		0.68	290.09
88		-30221	11791	-2067	62.83	77.18 20		0.53	
91		-30485	11980	-1455	62.83	77.86 20		0.37	158.70
94		-30656	12168	-820	62.83	78.30 21		0.21	89.48
97		-30730	12357	-155	62.83	78.50 21		0.04	16.87
100		-30730	12545	545	62.83	78.43 20		0.04	59.46
103		-30564	12734	1278	62.83	78.09 20			139.46
106		-30315	12922	2044	62.83	77.46 20		0.53	223.13
109		-29949	13111	2844	62.83	76.54 20		0.73	310.45
112		-29461	13299	3675	62.83	75.30 19			401.31
115		-28866	13488	4254	62.83	73.80 19		1.09	464.73
118		-28183	13676	4865	62.83	72.07 18		1.25	531.62
121		-27405	13865	5505	62.83	70.10 18		1.42	
124	6.10	-26530	14053	6176	62.83	67.87 17	57.43	1.59	675.63

127 130 133	6.40	-25551 -24465 -23267	14242 14430 14619	6877 7608	62.83 62.83	65.39 1680.44 62.63 1595.39	1.77 752.83 1.96 833.59
136		-21952	14807	8370 9162	62.83 62.83	59.59 1501.95	2.16 918.01
139		-20517	14996	9984	62.83	56.24 1399.78 52.58 1288.59	2.37 1006.21
142		-18956	15184	10836	62.83	48.60 1168.07	2.59 1098.44 2.82 1195.07
145		-17264	15373	11718	62.83	44.29 1037.94	3.06 1296.72
148		-15439	15561	12630	62.83	39.61 897.99	3.31 1404.55
151	7.45	-13474	15750	13573	62.83	34.57 748.09	3.58 1520.77
154	7.60	-11365	15938	14546	62.83	29.14 588.37	3.89 1650.17
157	7.75	-9108	16127	15549	62.83	23.29 419.59	4.25 1804.25
160	7.90	-6720	16315	16114	62.83	17.05 246.46	4.61 1954.92
163	8.05	-4272	16504	16461	62.83	10.70 143.90	5.02 2132.16
166	8.20	-1776	16692	16691	62.83	5.54 77.98	4.29 1819.23
169	8.35	735	16881	16441	62.83	3.96 57.34	4.22 1791.90
172	8.50	3169	17069	15397	62.83	8.13 111.69	4.57 1940.08
175	8.65	5432	17258	14241	62.83	13.65 181.15	4.26 1805.90
178	8.80	7525	17446	13151	62.83	19.12 287.10	3.73 1583.71
181	8.95	9457	17635	12126	62.83	24.16 422.29	3.34 1415.83
184	9.10	11238	17823	11166	62.83	28.78 549.45	3.02 1280.55
187	9.25	12878	18012	10269	62.83	33.02 667.49	2.74 1164.70
190	9.40	14387	18200	9434	62.83	36.91 776.41	2.50 1062.24
193	9.55	15773	18389	8661	62.83	40.47 876.57	2.29 970.20
196	9.70	17051	18577	8166	62.83	43.76 968.87	2.15 911.43
199 202	9.85 10.00	18271	18766	7860	62.83	46.88 1056.93	2.06 874.80
202	10.00	19443 20451	18954 19143	7276	62.83	49.89 1141.61	1.90 807.97
208	10.13	20451	19143	5437	62.83	52.47 1213.93	1.42 602.75
211	10.45	21679	19520	3740 2182	62.83	54.36 1266.12	0.98 414.21
214	10.60	21942	19708	758	62.83 62.83	55.61 1299.74	0.57 241.52
217	10.75	21997	19897	-537	62.83	56.29 1316.31 56.43 1317.33	0.20 83.89
220	10.90	21865	20085	-1707	62.83	56.09 1304.25	0.14 59.43 0.45 189.09
	11.05	21563	20274	-2757	62.83	55.32 1278.45	0.45 169.09
	11.20	21108	20462	-3693	62.83	54.16 1241.27	0.72 303.73
	11.35	20519	20651	-4518	62.83	52.65 1194.01	1.18 502.44
232	11.50	19811	20839	-5239	62.83	50.84 1137.92	1.38 583.69
235	11.65	18999	21028	-5858	62.83	48.75 1074.19	1.54 654.34
238	11.80	18100	21216	-6380	62.83	46.44 1003.98	1.68 714.95
	11.95	17126	21405	-6810	62.83	43.94 928.42	1.81 766.13
	12.10	16092	21593	-7151	62.83	41.27 848.59	1.90 808.46
	12.25	15011	21782	-7406	62.83	38.48 765.57	1.99 842.57
	12.40	13895	21970	-7581	62.83	35.59 680.42	2.05 869.11
	12.55	12757	22159	-7676	62.83	32.63 594.20	2.09 888.75
	12.70	11609	22347	-7696	62.83	29.64 508.03	2.13 902.20
	12.85	10460	22536	-7643	62.83	26.63 423.08	2.14 910.09
	13.00	9323	22724	-7519	62.83	23.65 340.70	2.15 912.84
	13.15	8208	22913	-7327	62.83	20.72 272.57	2.14 910.01
	13.30	7124	23101	-7069	62.83	17.89 237.78	2.12 899.06
	13.45 13.60	6082	23290	-6745	62.83	15.23 204.74	2.06 873.25
	13.75	5092	23478	-6359 F010	62.83	12.83 174.57	1.93 821.17
<u> </u>	10.70	4162	23667	-5910	62.83	10.79 148.62	1.73 735.19

280	13.90	3303	23855	-5399	62.83	9.17	127.75	1.47	625.89
283	14.05	2523	24044	-4829	62.83	7.93	111.60	1.24	526.29
286	14.20	1831	24232	-4198	62.83	6.89	98.04	1.08	457.58
289	14.35	1237	24421	-3509	62.83	6.00	86.46	0.90	382.40
292	14.50	748	24609	-2760	62.83	5.28	77.02	0.71	300.79
295	14.65	375	24797	-1952	62.83	4.73	69.92	0.50	212.77
298	14.80	125	24986	-1086	62.83	4.38	65.33	0.28	118.36
301	14.95	8	25174	-161	62.83	4.23	63.43	0.04	17.55

Verifica sezione cordoli

Simbologia adottata


M_h momento flettente espresso in [kgm] nel piano orizzontale

T_h taglio espresso in [kg] nel piano orizzontale

M_v momento flettente espresso in [kgm] nel piano verticale

T_v taglio espresso in [kg] nel piano verticale

Cordolo N° 1 (X=0.00 m) (Cordolo in c.a.)

Caratteristiche di sollecitazione, diagrammi M, T, N – condizione di carico n.1

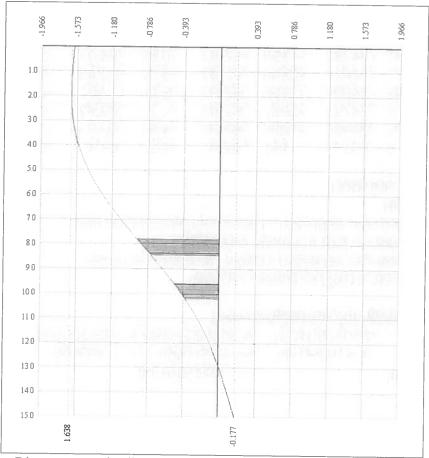


Diagramma degli spostamenti – condizione di carico n.1

Dott. Ing. Daniele LAPI via P.Nenni n°13, Sieci- Pontassieve (FI) Tel. e Fax 055/8328513

Il Progettista Il Direttore dei Lavori Il Committente

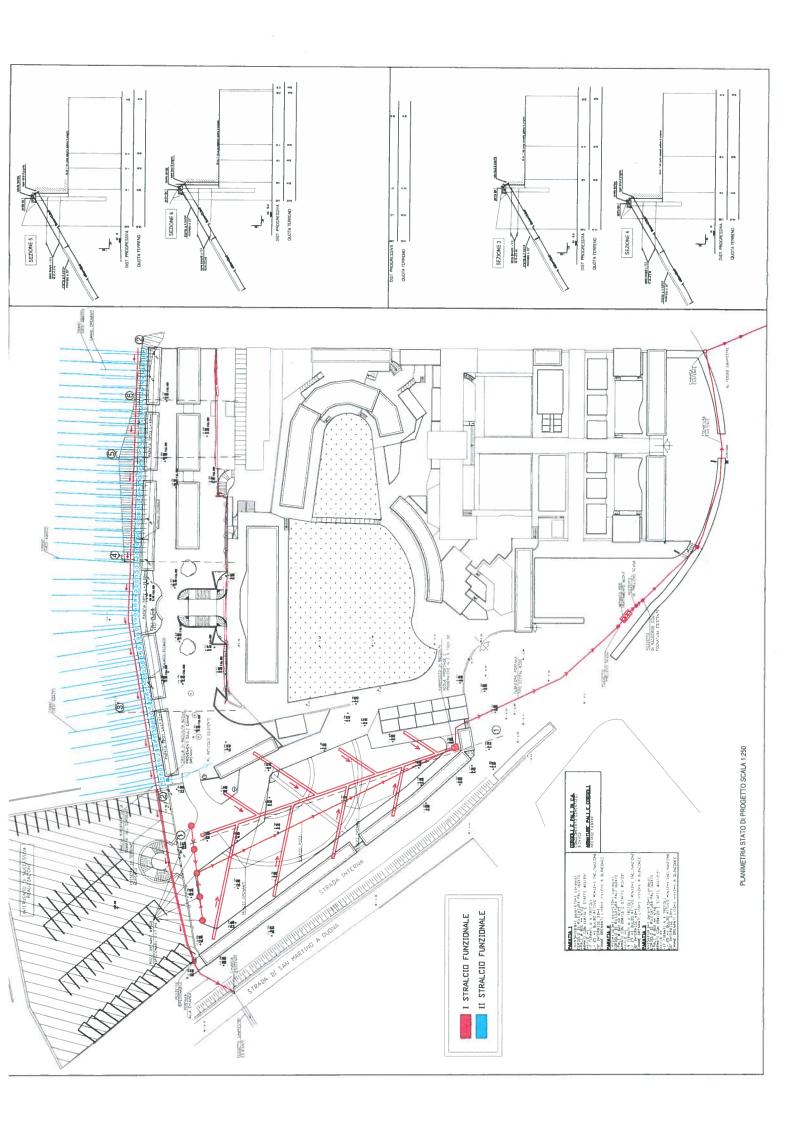
COMUNE DI PONTASSIEVE Loc. San Martino a Quona

Committente: Confraternita di Misericordia di Pontassieve

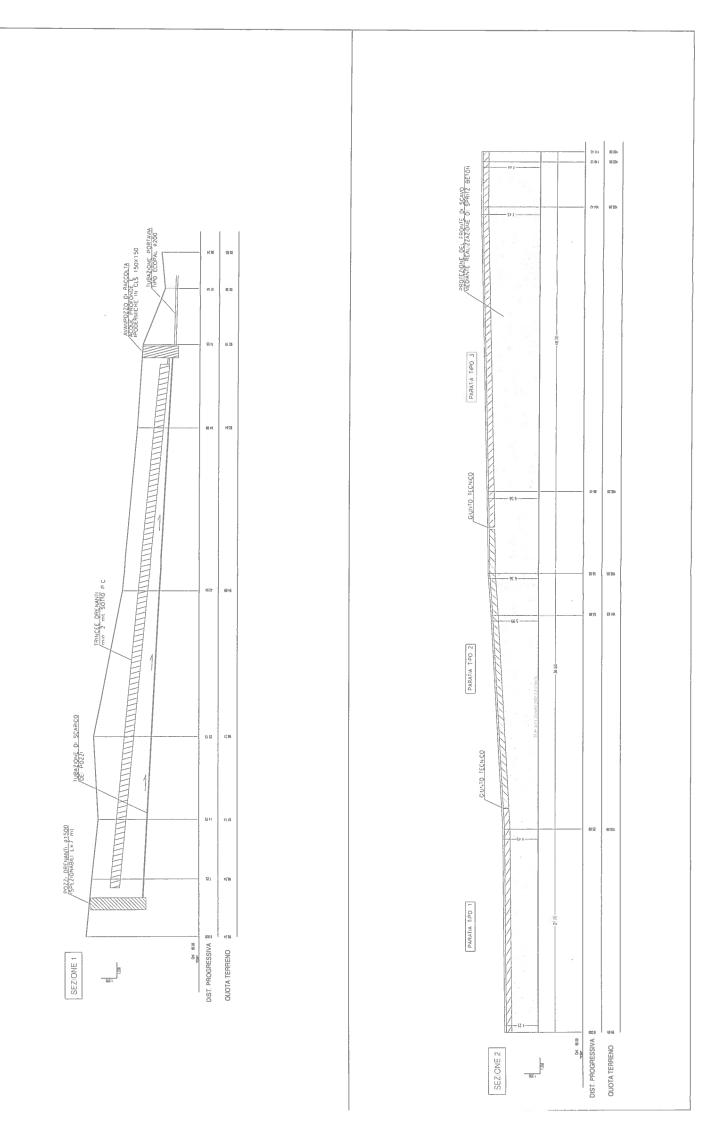
PROGETTO DI BONIFICA DEL VERSANTE PER L'AMPLIAMENTO DEL CIMITERO DI SAN MARTINO A QUONA I - II STRALCIO

Oggetto:

Planimetria e sezioni di progetto Interventi I e II stralcio


Tav.

Scala 1:250/1:200


Accialo pe	r gettl	Accialo per carpenteria	Getti di Fondazione	Getti di elevazione (travi-muri)	Getti di elevazione (pilastri)

REVISIONE	DATA	REDATTO	CONTROLLATO	APPROVATO
	Marzo 2008			

Archivio file	Computer	Directory	Nome file	Archivio lucidi

Dott. Ing. Daniele LAPI via P.Nenni n°13, Sieci- Pontassieve (FI) Tel. e Fax 055/8328513

Il Progettista Il Direttore dei Lavori Il Committente

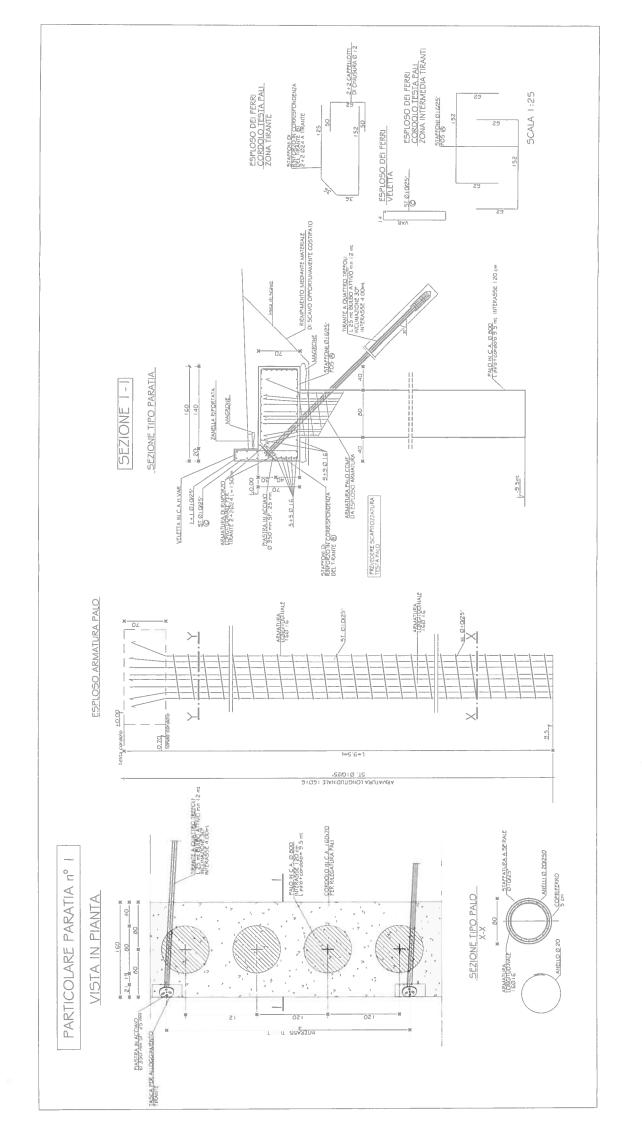
COMUNE DI PONTASSIEVE Loc. San Martino a Quona

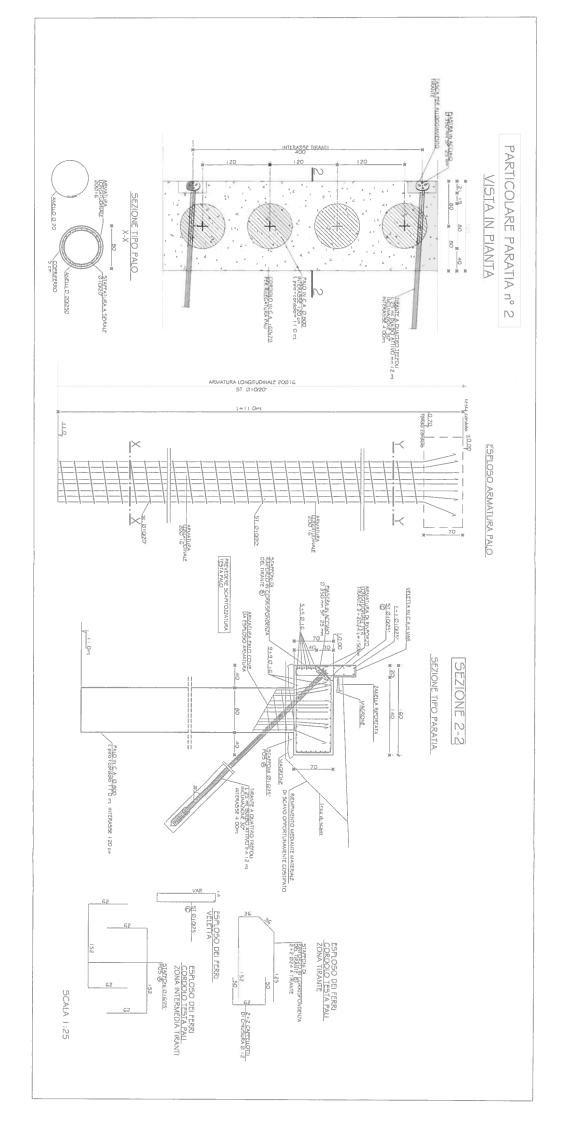
Committente: Confraternita di Misericordia di Pontassieve

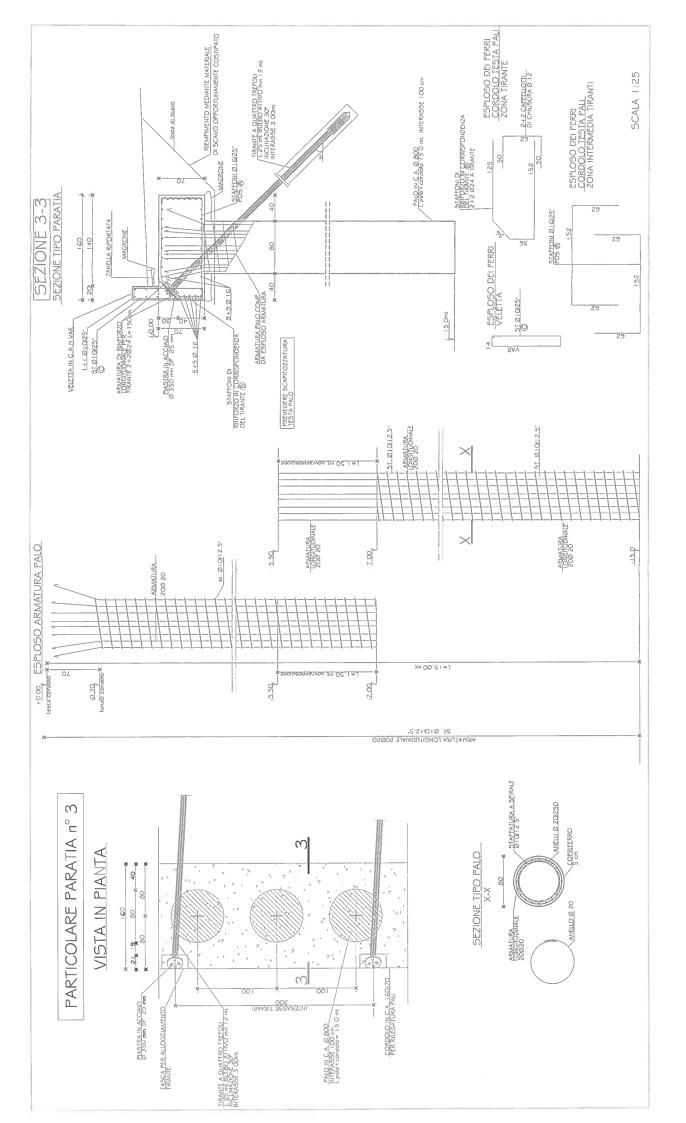
PROGETTO DI BONIFICA DEL VERSANTE PER L'AMPLIAMENTO DEL CIMITERO DI SAN MARTINO A QUONA - II STRALCIO

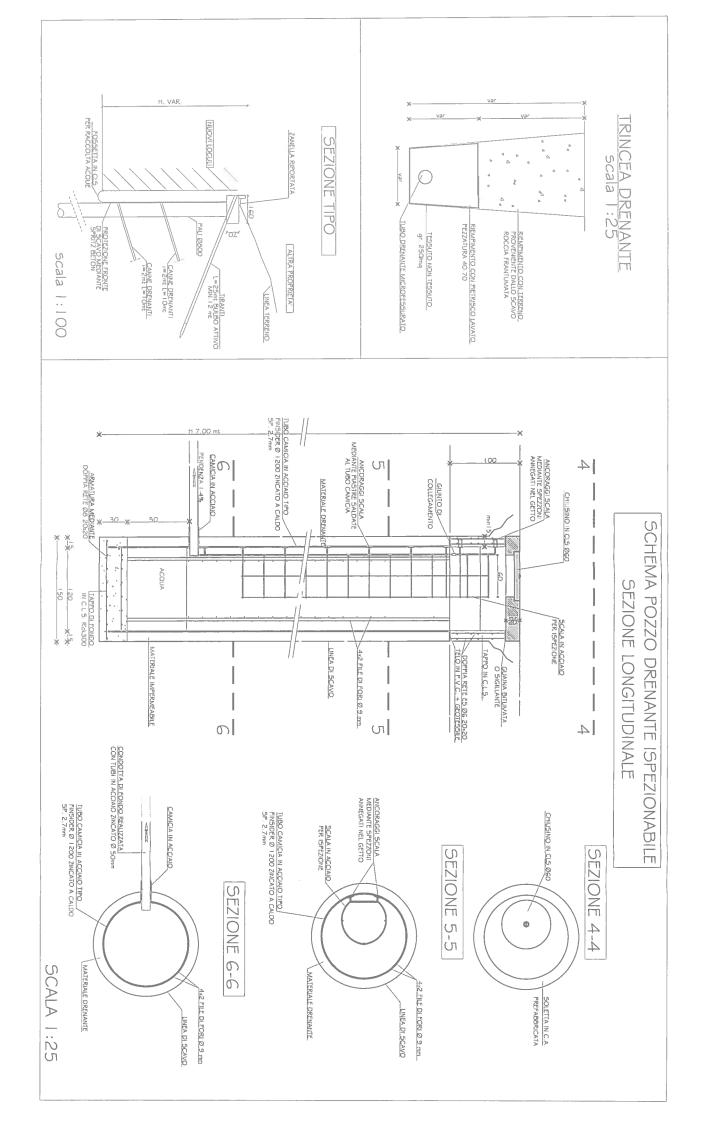
Oggetto:

Particolari opere di progetto


Scala 1:100/1:25


Accialo per g	getti	Acclalo per carpenterla	Getti di Fondazione	Getti di elevazione (travi-muri)	Getti di elevazione (pilastri)


REVISIONE	DATA	REDATTO	CONTROLLATO	APPROVATO	
	Marzo 2008				


Archivio file	Computer	Directory	Nome	file	Archivio lucidi

